如圖,已知橢圓C的中心在原點O,焦點在軸上,長軸長是短軸

長的2倍,且經(jīng)過點M. 平行于OM的直線軸上的截距為并交橢

圓C于A、B兩個不同點.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)求的取值范圍;

y

 
(3)求證:直線MA、MB與軸始終圍成一個等腰三角形.

 

【答案】

(1)(2)(3)見解析

【解析】本試題主要是考查了橢圓方程的求解以及直線與橢圓的位置關(guān)系的總額和運用。

(1)設(shè)橢圓C的標(biāo)準(zhǔn)方程為

>0)

由題意,結(jié)合性質(zhì)得到參數(shù)a,b的值

(2)

設(shè)

聯(lián)立方程組,然后根據(jù)判別式大于零得到m的范圍。

(3)設(shè),則、為()式的兩根,

設(shè)MA交軸于點P,MB交軸于點Q

       MA的方程為:

,可得P()=

同理得到點Q的坐標(biāo),然后結(jié)合中點公式,得到并證明。

解:(1)設(shè)橢圓C的標(biāo)準(zhǔn)方程為

>0)

由題意

解得

C的方程為              ………………4分

(2)

設(shè)

消去 

直線與橢圓有兩個不同的交點

式有兩個不等實根

>0

解得<2     又

的取值范圍為          ………………8分

(3)設(shè),則、為()式的兩根,

設(shè)MA交軸于點P,MB交軸于點Q

       MA的方程為:

,可得P()=

同理可得Q

設(shè)PQ的中點為N,則

由②知

MPQ的中線MNPQ

MPQ為等腰三角形                     ………………12分

注:其他正確解法請按步驟酌情給分。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C:
x24
+y2
=1的上、下頂點分別為A、B,點P在橢圓C上且異于點A、B,直線AP、BP與直線l:y=-2分別交于點M、N;
(I)設(shè)直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長的最小值;
(Ⅲ)當(dāng)點P運動時,以MN為直徑的圓是否經(jīng)過某定點?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點為F1(1,0)、F2(-1,0),離心率為
2
2
,過點A(2,0)的直線l交橢圓C于M、N兩點.
(1)求橢圓C的方程;
(2)①求直線l的斜率k的取值范圍;
②在直線l的斜率k不斷變化過程中,探究∠MF1A和∠NF1F2是否總相等?若相等,請給出證明,若不相等,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇五校高三下學(xué)期期初教學(xué)質(zhì)量調(diào)研數(shù)學(xué)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C的上、下頂點分別為AB,點P在橢圓C上且異于點A、B,直線AP、PB與直線ly=-2分別交于點M、N.

(1)設(shè)直線APPB的斜率分別為k1,k2,求證:k1·k2為定值;

(2)求線段MN長的最小值;

(3)當(dāng)點P運動時,以MN為直徑的圓是否經(jīng)過某定點?請證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省華南師大附中高三(下)5月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C:=1的上、下頂點分別為A、B,點P在橢圓C上且異于點A、B,直線AP、BP與直線l:y=-2分別交于點M、N;
(I)設(shè)直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長的最小值;
(Ⅲ)當(dāng)點P運動時,以MN為直徑的圓是否經(jīng)過某定點?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省華南師大附中高三(下)5月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy中,如圖,已知橢圓C:=1的上、下頂點分別為A、B,點P在橢圓C上且異于點A、B,直線AP、BP與直線l:y=-2分別交于點M、N;
(I)設(shè)直線AP、BP的斜率分別為k1,k2求證:k1•k2為定值;
(Ⅱ)求線段MN長的最小值;
(Ⅲ)當(dāng)點P運動時,以MN為直徑的圓是否經(jīng)過某定點?請證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案