【題目】設集合M={x|﹣a<x<a+1,a∈R},集合N={x|x2﹣2x﹣3≤0}.
(1)當a=1時,求M∪N及N∩RM;
(2)若x∈M是x∈N的充分條件,求實數a的取值范圍.
【答案】
(1)解:N={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3},
當a=1時,M={x|﹣a<x<a+1,a∈R}={x|﹣1<x<2},
∴M∪N={x|﹣1≤x≤3}∪{x|﹣1<x<2}={x﹣1≤x≤3},
N∩RM={x|x=﹣1或2≤x≤3}
(2)解:∵N={x|﹣1≤x≤3},M={x|﹣a<x<a+1,a∈R},
若x∈M是x∈N的充分條件,
則MN,
若M=,即﹣a≥a+1,即a≤﹣ 時,滿足條件.
若M≠,要使MN,
則 ,即 ,
∴﹣ <a≤1,
綜上:a≤1
【解析】(1)當a=1時,利用集合的基本運算求M∪N及N∩RM;(2)利用x∈M是x∈N的充分條件,即可求實數a的取值范圍.
【考點精析】認真審題,首先需要了解交、并、補集的混合運算(求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法).
科目:高中數學 來源: 題型:
【題目】設F1 , F2分別是橢圓E:x2+ =1(0<b<1)的左、右焦點,過F1的直線l與E相交于A、B兩點,且|AF2|,|AB|,|BF2|成等差數列. (Ⅰ)求|AB|;
(Ⅱ)若直線l的斜率為1,求b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|m﹣1≤x≤2m+3},函數f(x)=lg(﹣x2+2x+8)的定義域為B.
(1)當m=2時,求A∪B、(RA)∩B;
(2)若A∩B=A,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)證明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2014年5月,北京市提出地鐵分段計價的相關意見,針對“你能接受的最高票價是多少?”這個問題,在某地鐵站口隨機對50人進行調查,調查數據的頻率分布直方圖及被調查者中35歲以下的人數與統(tǒng)計結果如下: (Ⅰ)根據頻率分布直方圖,求a的值,并估計眾數,說明此眾數的實際意義;
(Ⅱ)從“能接受的最高票價”落在[8,10),[10,12]的被調查者中各隨機選取3人進行追蹤調查,記選中的6人中35歲以上(含35歲)的人數為X,求隨機變量X的分布列及數學期望.
最高票價 | 35歲以下人數 |
[2,4) | 2 |
[4,6) | 8 |
[6,8) | 12 |
[8,10) | 5 |
[10,12] | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定橢圓C: + =1(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓”.已知橢圓C的離心率為 ,且經過點(0,1).
(1)求實數a,b的值;
(2)若過點P(0,m)(m>0)的直線l與橢圓C有且只有一個公共點,且l被橢圓C的伴隨圓C1所截得的弦長為2 ,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知P為△ABC所在平面外一點,PA⊥PB,PB⊥PC,PC⊥PA,PH⊥平面 ABC,H,則H為△ABC的( )
A.重心
B.垂心
C.外心
D.內心
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com