精英家教網 > 高中數學 > 題目詳情

已知橢圓的左右焦點分別為,且經過點,為橢圓上的動點,以為圓心,為半徑作圓.

(1)求橢圓的方程;

(2)若圓軸有兩個交點,求點橫坐標的取值范圍.

 

【答案】

(1);(2).

【解析】

試題分析:(1)利用橢圓的定義列出表達式,求出,再由求出,寫出橢圓方程;(2)先找出圓的的圓心和半徑,因為圓軸有兩個交點,所以,化簡得,又因為為橢圓上的點,所以代入橢圓,得出關于的不等式,解出的范圍.

試題解析:(1)由橢圓定義得,                      1分

,                  3分

.   又 , ∴ .                       5分

故橢圓方程為.                                   6分

(2)設,則圓的半徑,    7分

圓心軸距離 ,                                   8分

若圓軸有兩個交點則有,      9分

化簡得.                                        10分

為橢圓上的點  ,                           11分

代入以上不等式得

,解得 .                           12分

,                                                 13分

.                                               14分

考點:1.橢圓的定義;2.圓的圓心和半徑;3.點到直線的距離公式.

 

練習冊系列答案
相關習題

科目:高中數學 來源:2012-2013學年安徽省高三第一次月考理科數學試卷(解析版) 題型:解答題

已知橢圓的左右焦點分別是,直線與橢圓交于兩點,.當時,M恰為橢圓的上頂點,此時△的周長為6.

(Ⅰ)求橢圓的方程;

(Ⅱ)設橢圓的左頂點為A,直線與直線分別相交于點,,問當

變化時,以線段為直徑的圓被軸截得的弦長是否為定值?若是,求出這個定值,

若不是,說明理由.

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓數學公式的左右焦點分別是F1,F(xiàn)2,過右焦點F2且斜率為k的直線與橢圓交于A,B兩點.
(1)若k=1,求|AB|的長度、△ABF1的周長;
(2)若數學公式,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設橢圓的左頂點為A,直線與直線:

分別相交于點,問當變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設橢圓的左頂點為A,直線與直線:

分別相交于點,問當變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,

說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的左右焦點分別是,直線與橢圓交于兩點且當時,M是橢圓的上頂點,且△的周長為6.

(1)求橢圓的方程;

(2)設橢圓的左頂點為A,直線與直線:

分別相交于點,問當變化時,以線段為直徑的圓

軸截得的弦長是否為定值?若是,求出這個定值,若不是,說明理由.

查看答案和解析>>

同步練習冊答案