【題目】以雙曲線上一點為圓心作圓,該圓與軸相切于的一個焦點,與軸交于兩點,若,則雙曲線的離心率________.

【答案】

【解析】

由題意可設Fc,0),MFx軸,可設Mc,n),n0,設xc,代入雙曲線的方程,可得M的坐標,圓的半徑,運用弦長公式,可得|PQ|2c,可得a,c的方程,運用離心率公式計算即可得到所求值.

由題意可設Fc,0),

MFx軸,可設Mc,n),n0,

xc,代入雙曲線的方程可得yb,

即有Mc,),

可得圓的圓心為M,半徑為,

即有My軸的距離為c,

可得|PQ|2c,

化簡可得3b44a2c2,

c2a2+b2,可得3c410c2a2+3a40,

e,可得3e410e2+30,

解得e23舍去),

即有e

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

求函數(shù)的單調(diào)區(qū)間;

如果對于任意的,總成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合,若對于任意實數(shù)對,存在,使成立,則稱集合垂直對點集” .給出下列四個集合:

;

;

.

其中是垂直對點集的序號是( .

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將曲線為參數(shù))上任意一點經(jīng)過伸縮變換后得到曲線的圖形.以坐標原點為極點,x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,已知直線

1)求曲線的普通方程和直線的直角坐標方程;

2)點P為曲線上的任意一點,求點P到直線的距離的最大值及取得最大值時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將曲線為參數(shù))上任意一點經(jīng)過伸縮變換后得到曲線的圖形.以坐標原點為極點,x軸的非負半軸為極軸,取相同的單位長度建立極坐標系,已知直線

1)求曲線的普通方程和直線的直角坐標方程;

2)點P為曲線上的任意一點,求點P到直線的距離的最大值及取得最大值時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學進行自主招生測試,需要對邏輯思維和閱讀表達進行能力測試.學校對參加測試的200名學生的邏輯思維成績、閱讀表達成績以及這兩項的總成績進行了排名.其中甲、乙、丙三位同學的排名情況如圖所示,下列敘述正確的是(

A.甲同學的邏輯思維成績排名比他的閱讀表達成績排名更靠前

B.乙同學的邏輯思維成績排名比他的閱讀表達成績排名更靠前

C.甲、乙、丙三位同學的邏輯思維成績排名中,甲同學更靠前

D.甲同學的總成績排名比丙同學的總成績排名更靠前

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),當時,恒成立,則的最大值是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面,,.

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)若二面角的余弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司進行共享單車的投放與損耗統(tǒng)計,到去年年底單車的市場保有量(已投入市場且能正常使用的單車數(shù)量)為輛,預計今后每年新增單車1000輛,隨著單車的頻繁使用,估計每年將有200輛車的損耗,并且今后若干年內(nèi),年平均損耗在上一年損耗基礎上增加.

1)預計年底單車的市場保有量是多少?

2)到哪一年底,市場的單車保有量達到最多?該年的單車保有量是多少輛(最后結果精確到整數(shù))?

查看答案和解析>>

同步練習冊答案