復(fù)數(shù)z=
5i
(2-i)(2+i)
(i是虛數(shù)單位)的共軛復(fù)數(shù)為( 。
A、-
5
3
i
B、
5
3
i
C、-i
D、i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.
解答: 解:復(fù)數(shù)z=
5i
(2-i)(2+i)
=
5i
5
=i的共軛復(fù)數(shù)是-i.
故選:C.
點(diǎn)評:本題考查了用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a與b的等差中項(xiàng)為
1
2
,則下列命題正確的是
 
(寫出所有正確命題的編號).
①ab≤
1
4

②a2+b2
1
2
;
③a4+b4≤1;
④若a>0,b>0,則b+2a≥4
2
ab;
⑤若a≥-
1
2
,b≥-
1
2
,則
2a+1
+
2b+1
≤2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)偶函數(shù)f(x)的定義域?yàn)镽,f(x)在區(qū)間(-∞,0]上為增函數(shù),則f(-2),f(π),f(3)的大小關(guān)系是( 。
A、f(π)>f(-2)>f(3)
B、f(π)>f(3)>f(-2)
C、f(π)<f(-2)<f(3)
D、f(π)<f(3)<f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i為虛數(shù)單位,若復(fù)數(shù)z滿足z(1+i)=2+4i,則z對應(yīng)在復(fù)平面上點(diǎn)的坐標(biāo)為( 。
A、(1,2)
B、(1,3)
C、(3,1 )
D、(2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(kπ+α)=2cos(kπ+α),(k∈Z),則
1
sinαcosα+cos2α
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a,a2},B={1},若B⊆A,則實(shí)數(shù)a的取值集合為( 。
A、{1,-1}B、{1}
C、{-1}D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|x2-x-2≥0},集合B={x|-2<x<1},則A∩B=( 。
A、{x|-2<x<-1}
B、{x|-2<x≤-1}
C、{x|-2<x<2}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos(x+
π
6
),x∈R.
(1)求f(π)的值;
(2)若cosθ=
4
5
θ∈(-
π
2
,0)
,求f(θ-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A為圓C:(x+2)2+(y-4)2=8上的動點(diǎn),O為坐標(biāo)原點(diǎn),N為OA的中點(diǎn).
(1)求動點(diǎn)N軌跡L的方程;
(2)若軌跡L的切線在x軸和y軸上的截距相等,求此切線的方程;
(3)從軌跡L外一點(diǎn)P(x1,y1)向該軌跡引一條切線,切點(diǎn)為M,且有|PM|=|PO|,求使得|PM|取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案