分析 利用對數的運算性質,可得f($\frac{1}{2010}$)+f(2010)=4,即可求出f(2010)的值.
解答 解:由函數f(x)=2+alog2x+blog3x,
得f($\frac{1}{x}$)=2+alog2x+blog3x=2-alog2x-blog3x=4-(2+alog2x+blog3x),
因此f(x)+f($\frac{1}{x}$)=4,
再令x=2010得f($\frac{1}{2010}$)+f(2010)=4
所以f(2010)=4-f($\frac{1}{2010}$)=0,
故答案為:0.
點評 本題考查了對數的運算性質,和函數的簡單性質,屬于基礎題.利用互為倒數的兩個自變量的函數值之間的關系,是解決本題的關鍵.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com