18.《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中有如下問題:“今有五人五錢,令上二人所得與下三人等.問各得幾何?”其意思為:“現(xiàn)有甲乙丙丁戊五人依次差值等額分五錢,要使甲乙兩人所得的錢與丙丁戊三人所得的錢相等,問每人各得多少錢?”根據(jù)題意,乙得( 。
A.$\frac{2}{3}$錢B.$\frac{5}{6}$錢C.1錢D.$\frac{7}{6}$錢

分析 依題意設甲、乙、丙、丁、戊所得錢分別為a-2d,a-d,a,a+d,a+2d,由題意求得a=-6d,結合a-2d+a-d+a+a+d+a+2d=5a=5求得a=1,則答案可求.

解答 解:依題意設甲、乙、丙、丁、戊所得錢分別為a-2d,a-d,a,a+d,a+2d,
則由題意可知,a-2d+a-d=a+a+d+a+2d,即a=-6d,
又a-2d+a-d+a+a+d+a+2d=5a=5,
∴a=1,d=-$\frac{a}{6}$=-$\frac{1}{6}$,
則a-d=1-(-$\frac{1}{6}$)=$\frac{7}{6}$
故乙得$\frac{7}{6}$錢.
故選:D.

點評 本題考查等差數(shù)列的第二項的求法,考查等差數(shù)列的通項公式、前n項和公式等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.在平面直角坐標系xoy中,雙曲線$\frac{x^2}{{2{m^2}}}-\frac{y^2}{3m}=1$的焦距為6,則所有滿足條件的實數(shù)m構成的集合是{$\frac{3}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.把3男2女共5名新生分配給甲、乙兩個班,每個班分配的新生不少于2名,且甲班至少分配1名女生,則不同的分配方案種數(shù)為16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若正實數(shù)x,y滿足x+y=1,則$\frac{y}{x}+\frac{4}{y}$的最小值是8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在四棱錐S-ABCD中,SD⊥平面ABCD,四邊形ABCD是直角梯形,∠ADC=∠DAB=90°,SD=AD=AB=2,DC=1
(1)求二面角S-BC-A的余弦值;
(2)設P是棱BC上一點,E是SA的中點,若PE與平面SAD所成角的正弦值為$\frac{2\sqrt{26}}{13}$,求線段CP的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知集合A={x|-1<x<3},B={x|x<2},則A∩B={x|-1<x<2}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知α是第二象限角,且sinα=$\frac{3}{{\sqrt{10}}},tan({α+β})=-2$,則tanβ=$\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)f(x)=$\frac{ln|x|}{x}$的圖象大致為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=x2,g(x)=-1nx,g'(x)為g(x)的導函數(shù).若存在直線l同為函數(shù)f(x)與g'(x)的切線,則直線l的斜率為(  )
A.$2\sqrt{5}-4$B.2C.4D.$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案