分析 (1)利用等差數(shù)列與等比數(shù)列的通項公式即可得出.
(2)cn=1+log3$\frac{_{n}}{2}$=n,dn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,再利用“裂項求和”方法即可得出.
解答 解:(1)數(shù)列{an}滿足an+2-2an+1+an=0(a∈N*),∴數(shù)列{an}是等差數(shù)列,設公差為d.
∵a3=5,其前7項和為42,∴a1+2d=5,7a1+$\frac{7×6}{2}$d=42,
解得a1=3,d=1.∴an=3+(n-1)=n+2.
設等比數(shù)列{bn}的公比為q,∵b1=a1-1=2,b2=a4=6,∴q=3.
∴bn=2×3n-1.
(2)cn=1+log3$\frac{_{n}}{2}$=n,
dn=$\frac{1}{{c}_{n}{c}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴數(shù)列{dn}的前n項和Tn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式、對數(shù)原式性質、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1] | B. | (-∞,0] | C. | (-∞,1) | D. | (-∞,0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2016 | B. | 4026 | C. | 4027 | D. | 4028 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com