5.已知命題p:?$x∈[\frac{1}{2},1],\frac{1}{x}$-a≥0,命題q:?x∈R,x2+2ax+2-a=0,若p∧q是真命題,求實(shí)數(shù)a的取值范圍.

分析 先判斷出命題p,q為真時(shí)參數(shù)a的范圍,再由p∧q是真命題,求出交集,可得答案.

解答 (本小題10分)
解:由$?\;x∈[\frac{1}{2},1],\frac{1}{x}-a≥0$,得a≤1…(3分)
由?x∈R,x2+2ax+2-a=0,
知△=4a2-4(2-a)≥0,得a≤-2或a≥1,…(6分)
又p∧q是真命題,
∴$\left\{\begin{array}{l}a≤1\\ a≤-2,或a≥1\end{array}\right.$…(9分)
∴實(shí)數(shù)a的取值范圍為(-∞,-2]∪{1}…(10分)

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,恒成立問(wèn)題,方程根的個(gè)數(shù)及存在性判斷等知識(shí)點(diǎn),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.對(duì)于定義在R上的函數(shù),下列命題:
(1)若f(-2)=f(2),則f(x)為偶函數(shù);
(2)若f(-2)≠f(2),則f(x)不是偶函數(shù);
(3)若f(-2)=f(2),則f(x)一定不是奇函數(shù).
其中正確的命題是②(把所有正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{{{2^x}-1}}{{{2^{x+1}}+a}}$是奇函數(shù)
(1)求a的值;
(2)判斷函數(shù)的單調(diào)性,并給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=2sin(ωx-$\frac{5π}{6}$)+2$\sqrt{3}$sinωx,(ω>0)周期T∈[π,2π],x=π為函數(shù)f(x)圖象的一條對(duì)稱軸,
(1)求ω;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列函數(shù)中,值域?yàn)椋?,+∞)的函數(shù)是( 。
A.y=5${\;}^{\frac{1}{2-x}}$B.y=log2(3x+2)C.y=$\sqrt{1-{2}^{x}}$D.y=($\frac{1}{3}$)1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.化簡(jiǎn)求值:
(1)0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$;
(2)$\frac{1}{2}$lg2.5+lg2-lg$\sqrt{0.1}$-log29×log32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.不等式$\frac{(x-2)(x-3)}{{{x^2}+1}}<0$的解集是{x|2<x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.給出命題:①x∈R,使x3<1;  ②?x∈Q,使x2=2; ③?x∈N,有x3>x2;    ④?x∈R,有x2+1>0.
其中的真命題是:①④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.“x∈A或x∈B”是“x∈A∩B”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案