(文)已知f(n)是關(guān)于正整數(shù)n的命題.小明證明了命題f(1),f(2),f(3)均成立,并對任意的正整數(shù)k,在假設(shè)f(k)成立的前提下,證明了f(k+m)成立,其中m為某個固定的整數(shù),若要用上述證明說明f(n)對一切正整數(shù)n均成立,則m的最大值為( )
A.1
B.2
C.3
D.4
【答案】分析:本題考查的知識點是數(shù)學歸納法,由歸納法的步驟知,我們由在假設(shè)f(k)成立的前提下,證明了f(k+m)成立,由此類推,對n>m的任意整數(shù)均成立,結(jié)合小明證明了命題f(1),f(2),f(3)均成立,由此不難得到m的最大值.
解答:解:由題意可知,
f(n)對n=1,2,3都成立,
假設(shè)f(k)成立的前提下,證明了f(k+m)成立時,
m的最大值可以為:3.
故選C.
點評:本題是基礎(chǔ)題,考查數(shù)學歸納法證明問題的步驟,理解遞推關(guān)系,找出規(guī)律是判斷正誤的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2006•松江區(qū)模擬)(文)已知函數(shù)f(x)=ax2-2
4+2b-b2
x
,g(x)=-
1-(x-a)2
,(a,b∈R)
(Ⅰ)當b=0時,若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)求滿足下列條件的所有實數(shù)對(a,b):當a是整數(shù)時,存在x0,使得f(x0)是f(x)的最大值,g(x0)是g(x)的最小值;
(Ⅲ)對滿足(Ⅱ)的條件的一個實數(shù)對(a,b),試構(gòu)造一個定義在D={x|x>-2,且x≠2k-2,k∈N}上的函數(shù)h(x),使當x∈(-2,0)時,h(x)=f(x),當x∈D時,h(x)取得最大值的自變量的值構(gòu)成以x0為首項的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•奉賢區(qū)二模)(文)已知f(n)是關(guān)于正整數(shù)n的命題.小明證明了命題f(1),f(2),f(3)均成立,并對任意的正整數(shù)k,在假設(shè)f(k)成立的前提下,證明了f(k+m)成立,其中m為某個固定的整數(shù),若要用上述證明說明f(n)對一切正整數(shù)n均成立,則m的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

(文)已知f(n)是關(guān)于正整數(shù)n的命題.小明證明了命題f(1),f(2),f(3)均成立,并對任意的正整數(shù)k,在假設(shè)f(k)成立的前提下,證明了f(k+m)成立,其中m為某個固定的整數(shù),若要用上述證明說明f(n)對一切正整數(shù)n均成立,則m的最大值為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市奉賢區(qū)高考數(shù)學二模試卷(文科)(解析版) 題型:選擇題

(文)已知f(n)是關(guān)于正整數(shù)n的命題.小明證明了命題f(1),f(2),f(3)均成立,并對任意的正整數(shù)k,在假設(shè)f(k)成立的前提下,證明了f(k+m)成立,其中m為某個固定的整數(shù),若要用上述證明說明f(n)對一切正整數(shù)n均成立,則m的最大值為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習冊答案