【題目】在底面為正三角形的直三棱柱中,已知AB=AA1,點(diǎn)M為的中點(diǎn).
(1)求證:
(2)點(diǎn)P為的中點(diǎn),求二面角P-AB-M的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)取的中點(diǎn),連接,則,由平面平面可得,利用平面圖形的性質(zhì)可證得,進(jìn)而得證;
(2)取的中點(diǎn)為原點(diǎn),建立空間直角坐標(biāo)系,設(shè),分別求得平面和平面的法向量,進(jìn)而利用余弦定理求解即可.
(1)證明:取的中點(diǎn),連接,則,
又平面平面,
所以平面,所以,
因?yàn)?/span>,是等邊三角形,
所以,,
所以,所以,
又,
所以平面,所以.
(2)取的中點(diǎn)為原點(diǎn),如圖建立空間直角坐標(biāo)系,
設(shè),則,,,,
所以,,,
設(shè)平面的法向量,平面的法向量,
由,即,令,則,,即,
由,即,令,則,,即
設(shè)所求的角為,則,
由圖可知,所求的角為銳角,
所以所求角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三(1)班在一次語(yǔ)文測(cè)試結(jié)束后,發(fā)現(xiàn)同學(xué)們?cè)诒痴b內(nèi)容方面失分較為嚴(yán)重.為了提升背誦效果,班主任倡議大家在早、晚讀時(shí)間站起來(lái)大聲誦讀,為了解同學(xué)們對(duì)站起來(lái)大聲誦讀的態(tài)度,對(duì)全班50名同學(xué)進(jìn)行調(diào)查,將調(diào)查結(jié)果進(jìn)行整理后制成下表:
考試分?jǐn)?shù) | ||||||
頻數(shù) | 5 | 10 | 15 | 5 | 10 | 5 |
贊成人數(shù) | 4 | 6 | 9 | 3 | 6 | 4 |
(1)欲使測(cè)試優(yōu)秀率為30%,則優(yōu)秀分?jǐn)?shù)線應(yīng)定為多少分?
(2)依據(jù)第1問(wèn)的結(jié)果及樣本數(shù)據(jù)研究是否贊成站起來(lái)大聲誦讀的態(tài)度與考試成績(jī)是否優(yōu)秀的關(guān)系,列出2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為贊成與否的態(tài)度與成績(jī)是否優(yōu)秀有關(guān)系.
參考公式及數(shù)據(jù):,.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點(diǎn)).
(1)試求拋物線的方程;
(2)已知點(diǎn)兩點(diǎn)在拋物線上,是以點(diǎn)為直角頂點(diǎn)的直角三角形.
①求證:直線恒過(guò)定點(diǎn);
②過(guò)點(diǎn)作直線的垂線交于點(diǎn),試求點(diǎn)的軌跡方程,并說(shuō)明其軌跡是何種曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點(diǎn)( )
A.向左平移個(gè)單位長(zhǎng)度,縱坐標(biāo)縮短到原來(lái)的,橫坐標(biāo)不變
B.向左平移個(gè)單位長(zhǎng)度,縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍橫坐標(biāo)不變
C.向右平移個(gè)單位長(zhǎng)度,縱坐標(biāo)縮短到原來(lái)的,橫坐標(biāo)不變
D.向右平移個(gè)單位長(zhǎng)度,縱坐標(biāo)伸長(zhǎng)到原來(lái)的3倍,橫坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代有著輝煌的數(shù)學(xué)研究成果,《周牌算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》等10部專著是了解我國(guó)古代數(shù)學(xué)的重要文獻(xiàn).這10部專著中有5部產(chǎn)生于魏晉南北朝時(shí)期.某中學(xué)擬從這10部專著中選擇2部作為“數(shù)學(xué)文化”課外閱讀教材則所選2部專著中至少有一部是魏晉南北朝時(shí)期的專著的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠加工的零件按箱出廠,每箱有10個(gè)零件,在出廠之前需要對(duì)每箱的零件作檢驗(yàn),人工檢驗(yàn)方法如下:先從每箱的零件中隨機(jī)抽取4個(gè)零件,若抽取的零件都是正品或都是次品,則停止檢驗(yàn);若抽取的零件至少有1個(gè)至多有3個(gè)次品,則對(duì)剩下的6個(gè)零件逐一檢驗(yàn).已知每個(gè)零件檢驗(yàn)合格的概率為0.8,每個(gè)零件是否檢驗(yàn)合格相互獨(dú)立,且每個(gè)零件的人工檢驗(yàn)費(fèi)為2元.
(1)設(shè)1箱零件人工檢驗(yàn)總費(fèi)用為元,求的分布列;
(2)除了人工檢驗(yàn)方法外還有機(jī)器檢驗(yàn)方法,機(jī)器檢驗(yàn)需要對(duì)每箱的每個(gè)零件作檢驗(yàn),每個(gè)零件的檢驗(yàn)費(fèi)為1.6元.現(xiàn)有1000箱零件需要檢驗(yàn),以檢驗(yàn)總費(fèi)用的數(shù)學(xué)期望為依據(jù),在人工檢驗(yàn)與機(jī)器檢驗(yàn)中,應(yīng)該選擇哪一個(gè)?說(shuō)明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在極坐標(biāo)系中,曲線C1是以C1(4,0)為圓心的半圓,曲線C2是以為圓心的圓,曲線C1、C2都過(guò)極點(diǎn)O.
(1)分別寫出半圓C1,C2的極坐標(biāo)方程;
(2)直線l:與曲線C1,C2分別交于M、N兩點(diǎn)(異于極點(diǎn)O),P為C2上的動(dòng)點(diǎn),求△PMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)橢圓的焦點(diǎn),且橢圓的中心關(guān)于直線的對(duì)稱點(diǎn)的橫坐標(biāo)為(為橢圓的焦距).
(1)求橢圓的方程;
(2)是否存在過(guò)點(diǎn),且交橢圓于點(diǎn)的直線,滿足.若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com