【題目】已知矩形的長,寬,將其沿對角線折起,得到四面體,
如圖所示,給出下列結(jié)論:
①四面體體積的最大值為;
②四面體外接球的表面積恒為定值;
③若分別為棱的中點,則恒有且;
④當二面角為直二面角時,直線所成角的余弦值為;
⑤當二面角的大小為時,棱的長為.
其中正確的結(jié)論有____________________(請寫出所有正確結(jié)論的序號)
【答案】②③④
【解析】
對于①四面體體積最大為兩個面互相垂直,四面體體積的最大值為,故不正確;②三棱錐外接球的半徑為,所以三棱錐外接球的表面積為,②正確;③若為分別棱的中點,連接,則,根據(jù)等腰三角形三線合一得到,連接,容易判斷,得到,所以,所以③正確;④二面角為直二面角時,以為原點所在直線分別為軸,則由向量的數(shù)量積可以得到直線所成角的余弦值為,所以④正確;
⑤當二面角的大小為時,棱的長為,在直角三角形中,
,作,則,同理直角三角形中,則,在平面內(nèi),過作,且,連接,易得四邊形為矩形,則,又,即有為二面角的平面角,且為,即,由平面,得到,即有,則,故⑤錯誤,故答案為②③④.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中, 的參數(shù)方程為(為參數(shù)),在以坐標原點為極點, 軸正半軸為極軸的極坐標系中, 的極坐標方程.
(Ⅰ)說明是哪種曲線,并將的方程化為普通方程;
(Ⅱ)與有兩個公共點,頂點的極坐標,求線段的長及定點到兩點的距離之積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,得曲線的極坐標方程為 .
(1)化曲線的參數(shù)方程為普通方程,化曲線的極坐標方程為直角坐標方程;
(2)直線(為參數(shù))過曲線與軸負半軸的交點,求與直線平行且與曲線相切的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機擲兩枚質(zhì)地均勻的骰子,它們向上的點數(shù)之和不超過5的概率記為p1,點數(shù)之和大于5的概率記為p2,點數(shù)之和為偶數(shù)的概率記為p3,則
( )
A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,判斷函數(shù)的單調(diào)性;
(2)若存在,使得(是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】表示一位騎自行車和一位騎摩托車的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時間之間的函數(shù)關系,有人根據(jù)函數(shù)圖象,提出了關于這兩個旅行者的如下信息:
①騎自行車者比騎摩托車者早出發(fā)3 h,晚到1 h;
②騎自行車者是變速運動,騎摩托車者是勻速運動;
③騎摩托車者在出發(fā)1.5 h后追上了騎自行車者;
④騎摩托車者在出發(fā)1.5 h后與騎自行車者速度一樣.
其中,正確信息的序號是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若是實數(shù)集上的奇函數(shù),求的值;
(2)用定義證明在實數(shù)集上單調(diào)遞增;
(3)若值域為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2-2aln x+(a-2)x,a∈R.
(1)當a=1時,求函數(shù)f(x)的圖象在點(1,f(1))處的切線方程.
(2)是否存在實數(shù)a,對任意的x1,x2∈(0,+∞)且x1≠x2有>a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此做了四次試驗,得到的數(shù)據(jù)如下表所示:
零件的個數(shù)x/個 | 2 | 3 | 4 | 5 |
加工的時間y/h | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;
(2)求出y關于x的線性回歸方程,并在坐標系中畫出回歸直線;
(3)試預測加工10個零件需要多少時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com