某種食品是經(jīng)過、三道工序加工而成的,、、工序的產(chǎn)品合格率分別為、.已知每道工序的加工都相互獨(dú)立,三道工序加工的產(chǎn)品都為合格時產(chǎn)品為一等品;有兩道合格為二等品;其它的為廢品,不進(jìn)入市場.
(1)正式生產(chǎn)前先試生產(chǎn)袋食品,求這2袋食品都為廢品的概率;
(2)設(shè)為加工工序中產(chǎn)品合格的次數(shù),求的分布列和數(shù)學(xué)期望.

(1);(2)分布列見詳見,

解析試題分析:(1) 求出2袋食品的三道工序都不合格的概率,②有一袋食品三道工序都不合格,另一袋有兩道工序不合格的概率,③兩袋都有兩道工序不合格的概率,則所求的概率為;(2)由題意可得,求出離散型隨機(jī)變量的取每個值的概率,即得 的分布列,由分布列求出期望.
試題解析:(1)2袋食品都為廢品的情況為
①2袋食品的三道工序都不合格
②有一袋食品三道工序都不合格,另一袋有兩道工序不合格

③兩袋都有兩道工序不合格,
所以2袋食品都為廢品的概率為
(2)
,













考點(diǎn):1、相互獨(dú)立事件的概率乘法公式;2、離散型隨機(jī)變量及其分布列;3、離散型隨機(jī)變量的期望與方差.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)為豐富教工生活,國慶節(jié)舉辦教工趣味投籃比賽,有、兩個定點(diǎn)投籃位置,在點(diǎn)投中一球得2分,在點(diǎn)投中一球得3分.其規(guī)則是:按先的順序投
籃.教師甲在點(diǎn)投中的概率分別是,且在兩點(diǎn)投中與否相互獨(dú)立.
(1)若教師甲投籃三次,試求他投籃得分X的分布列和數(shù)學(xué)期望;
(2)若教師乙與甲在A、B點(diǎn)投中的概率相同,兩人按規(guī)則各投三次,求甲勝乙的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某籃球隊與其他6支籃球隊依次進(jìn)行6場比賽,每場均決出勝負(fù),設(shè)這支籃球隊與其他籃球隊比賽勝場的事件是獨(dú)立的,并且勝場的概率是.
(1)求這支籃球隊首次勝場前已經(jīng)負(fù)了兩場的概率;
(2)求這支籃球隊在6場比賽中恰好勝了3場的概率;
(3)求這支籃球隊在6場比賽中勝場數(shù)的期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

盒子里裝有16只球,其中6只是玻璃球,另外10只是木質(zhì)球.而玻璃球中有2只是紅色的,4只是藍(lán)色的;木質(zhì)球中有3只是紅色的,7只是藍(lán)色的,現(xiàn)從中任取一只球,如果已知取到的是藍(lán)色的球,求這個球是玻璃球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了倡導(dǎo)健康、低碳、綠色的生活理念,某市建立了公共自行車服務(wù)系統(tǒng)鼓勵市民租用公共自行車出行公共自行車按每車每次的租用時間進(jìn)行收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)如下:
①租用時間不超過1小時,免費(fèi);
②租用時間為1小時以上且不超過2小時,收費(fèi)1元;
③租用時間為2小時以上且不超過3小時,收費(fèi)2元;
④租用時間超過3小時的時段,按每小時2元收費(fèi)(不足1小時的部分按1小時計算)已知甲、乙兩人獨(dú)立出行,各租用公共自行車一次,兩人租車時間都不會超過3小時,設(shè)甲、乙租用時間不超過1小時的概率分別是0.4和0.5 ,租用時間為1小時以上且不超過2小時的概率分別是0.5和0.3.
(1)求甲、乙兩人所付租車費(fèi)相同的概率;
(2)設(shè)甲、乙兩人所付租車費(fèi)之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望E

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某課程考核分理論與實(shí)驗(yàn)兩部分進(jìn)行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實(shí)驗(yàn)考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.
(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;
(2)求這三個人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,∠AOB=60°,OA=2,OB=5,在線段OB上任取一點(diǎn)C,試求:

(1)△AOC為鈍角三角形的概率;
(2)△AOC為銳角三角形的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

氣象部門提供了某地區(qū)今年六月份(30天)的日最高氣溫的統(tǒng)計表如下:

日最高氣溫t(單位:℃)
t≤22
22<t≤28
28<t≤32
t>32
天數(shù)
6
12
Y
Z
由于工作疏忽,統(tǒng)計表被墨水污染,YZ數(shù)據(jù)不清楚,但氣象部門提供的資料顯示,六月份的日最高氣溫不高于32℃的頻率為0.9.
某水果商根據(jù)多年的銷售經(jīng)驗(yàn),六月份的日最高氣溫t(單位:℃)對西瓜的銷售影響如下表:
日最高氣溫t(單位:℃)
t≤22
22<t≤28
28<t≤32
t>32
日銷售額X(單位:千元)
2
5
6
8
(1)求Y,Z的值;
(2)若視頻率為概率,求六月份西瓜日銷售額的期望和方差;
(3)在日最高氣溫不高于32℃時,求日銷售額不低于5千元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一盒中有9個正品和3個次品零件,每次取一個零件,如果取出的是次品不再放回,求在取得正品前已取出的次品數(shù)X的概率分布,并求P.

查看答案和解析>>

同步練習(xí)冊答案