【題目】平面圖形ABB1A1C1C如圖4所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC= ,A1B1=A1C1= .現(xiàn)將該平面圖形分別沿BC和B1C1折疊,使△ABC與△A1B1C1所在平面都與平面BB1C1C垂直,再分別連接A2A,A2B,A2C,得到如圖2所示的空間圖形,對此空間圖形解答下列問題.
(Ⅰ)證明:AA1⊥BC;
(Ⅱ)求AA1的長;
(Ⅲ)求二面角A﹣BC﹣A1的余弦值.
【答案】證明:(Ⅰ)取BC,B1C1的中點為點O,O1 , 連接AO,OO1 , A1O,A1O1 ,
∵AB=AC,∴AO⊥BC
∵平面ABC⊥平面BB1C1C,平面ABC∩平面BB1C1C=BC
∴AO⊥平面BB1C1C
同理A1O1⊥平面BB1C1C,∴AO∥A1O1 , ∴A、O、A1、O1共面
∵OO1⊥BC,AO⊥BC,OO1∩AO=O,∴BC⊥平面OO1A1A
∵AA1平面OO1A1A,∴AA1⊥BC;
(Ⅱ)解:延長A1O1到D,使O1D=OA,則∵O1D∥OA,∴AD∥OO1 , AD=OO1 ,
∵OO1⊥BC,平面A1B1C1⊥平面BB1C1C,平面A1B1C1∩平面BB1C1C=B1C1 ,
∴OO1⊥面A1B1C1 ,
∵AD∥OO1 ,
∴AD⊥面A1B1C1 ,
∵AD=BB1=4,A1D=A1O1+O1D=2+1=3
∴AA1= =5;
(Ⅲ)解:∵AO⊥BC,A1O⊥BC,∴∠AOA1是二面角A﹣BC﹣A1的平面角
在直角△OO1A1中,A1O=
在△OAA1中,cos∠AOA1=﹣
∴二面角A﹣BC﹣A1的余弦值為﹣ .
【解析】(Ⅰ)證明AA1⊥BC,只需證明BC⊥平面OO1A1A,取BC,B1C1的中點為點O,O1 , 連接AO,OO1 , A1O,A1O1 , 即可證得;(Ⅱ)延長A1O1到D,使O1D=OA,則可得AD∥OO1 , AD=OO1 , 可證OO1⊥面A1B1C1 , 從而AD⊥面A1B1C1 , 即可求AA1的長;(Ⅲ)證明∠AOA1是二面角A﹣BC﹣A1的平面角,在△OAA1中,利用余弦定理,可求二面角A﹣BC﹣A1的余弦值.
【考點精析】本題主要考查了直線與平面垂直的性質(zhì)和平面與平面垂直的性質(zhì)的相關(guān)知識點,需要掌握垂直于同一個平面的兩條直線平行;兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是等差數(shù)列,滿足, ,數(shù)列滿足, ,且是等比數(shù)列.
(1)求數(shù)列和的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關(guān),現(xiàn)對30名六年級學(xué)生進行了問卷調(diào)查,得到數(shù)據(jù)如表所示(平均每天喝500ml以上為常喝,體重超過50kg為肥胖):
常喝 | 不常喝 | 合計 | |
肥胖 | 2 | 8 | |
不肥胖 | 18 | ||
合計 | 30 |
(Ⅰ)請將上面的列聯(lián)表補充完整;
(Ⅱ)是否有99%的把握認為肥胖與常喝碳酸飲料有關(guān)?說明你的理由.
0.050 0.010 | |
3.841 6.635 |
參考數(shù)據(jù):
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱A1B1C1D1﹣ABCD中,當(dāng)?shù)酌嫠倪呅蜛BCD滿足條件 時,有A1C⊥B1D1 . (注:填上你認為正確的一種條件即可,不必考慮所有可能的情形.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·上海)如圖,圓錐的頂點為P,底面的一條直徑為AB,C為半圓弧AB的中點,E為劣弧CB的中點. 已知PO=2,OA=1,求三棱錐P-AOC的體積,并求異面直線PA與OE所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點的序列An(xn,0),n∈N*,其中x1=0,x2=a(a>0),A3是線段A1A2的中點,A4是線段A2A3的中點,……,An是線段An-2An-1的中點,……
(1)寫出xn與xn-1,xn-2之間的關(guān)系式(n≥3);
(2)設(shè)an=xn+1-xn,計算a1,a2,a3,由此推測數(shù)列{an}的通項公式,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若F(x)=f[f(x)+1]+m有兩個零點x1 , x2 , 則x1x2的取值范圍是( )
A.[4﹣2ln2,+∞)
B.( ,+∞)
C.(﹣∞,4﹣2ln2]
D.(﹣∞, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.
(1)若,證明:函數(shù)必有局部對稱點;
(2)若函數(shù)在區(qū)間內(nèi)有局部對稱點,求實數(shù)的取值范圍;
(3)若函數(shù)在上有局部對稱點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,D,E分別是B1C1、BC的中點,∠BAC=90°,AB=AC=2,A1A=4,A1E= .
(Ⅰ)證明:A1D⊥平面A1BC;
(Ⅱ)求二面角A﹣BD﹣B1的平面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com