【題目】如圖,在四棱錐中,平面平面的中點(diǎn),上一點(diǎn),且

1)求證:平面;

2)若求直線與平面所成角的正弦值.

【答案】1)證明見解析;(2.

【解析】

1)取PA的中點(diǎn)M,連接MD,ME,證明四邊形MDFE是平行四邊形,則,再由直線與平面平行的判定可得PAD

2)過點(diǎn)P于點(diǎn)H,則平面ABCD,以H為坐標(biāo)原點(diǎn),HA所在直線為y軸,過點(diǎn)H且平行于AB的直線為z軸,PH所在直線為x軸建立空間直角坐標(biāo)系,求出平面ABCD的一個(gè)法向量與的坐標(biāo),再由兩向量所成角的余弦值可得直線PB與平面ABCD所成角的正弦值.

1)如圖,取的中點(diǎn),連接.

,.

,,所以,,

所以四邊形是平行四邊形,所以,

因?yàn)?/span>,,所以

2)過點(diǎn)于點(diǎn),則平面,以為坐標(biāo)原點(diǎn),所在直線為軸,過點(diǎn)且平行于的直線為軸,所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,

在等腰三角形中,,

因?yàn)?/span>,所以

解得.

,所以,所以.

易知平面的一個(gè)法向量為,

所以,

所以直線與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,為等邊三角形,四邊形為矩形,的中點(diǎn),.

證明:平面平面.

設(shè)二面角的大小為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).

1)若函數(shù)的極小值為,求的值;

2)若,證明:當(dāng)時(shí),成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線y2=4x的焦點(diǎn)的直線l與拋物線交于A,B兩點(diǎn),設(shè)點(diǎn)M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為t為參數(shù)),曲線C2的參數(shù)方程為α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn).x軸正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;

(Ⅱ)射線與曲線C2交于O,P兩點(diǎn),射線與曲線C1交于點(diǎn)Q,若△OPQ的面積為1,求|OP|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C1a0,b0)的焦點(diǎn)分別為F1(﹣5,0),F25,0),PC上一點(diǎn),PF1PF2tanPF1F2,則C的方程為(

A.x21B.y21

C.1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知定點(diǎn)F1,0),點(diǎn)Ax軸的非正半軸上運(yùn)動,點(diǎn)By軸上運(yùn)動,滿足0,A關(guān)于點(diǎn)B的對稱點(diǎn)為M,設(shè)點(diǎn)M的軌跡為曲線C.

1)求C的方程;

2)已知點(diǎn)G3,﹣2),動直線xtt3)與C相交于P,Q兩點(diǎn),求過G,PQ三點(diǎn)的圓在直線y=﹣2上截得的弦長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCD,AB=2,BC=1,,E為PB中點(diǎn).

(Ⅰ)求證:PD∥平面ACE;

(Ⅱ)求證:PD⊥平面PBC;

(Ⅲ)求三棱錐E-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過定點(diǎn)的直線l與橢圓E相交于A,B兩點(diǎn),C為橢圓的左頂點(diǎn),當(dāng)直線l過點(diǎn)時(shí),O為坐標(biāo)原點(diǎn))的面積為

1)求橢圓E的方程;

2)求證:當(dāng)直線l不過C點(diǎn)時(shí),為定值.

查看答案和解析>>

同步練習(xí)冊答案