為了應對國際原油的變化,某地建設一座油料庫,F(xiàn)在油料庫已儲油料噸,計劃正式運營后的第一年進油量為已儲油量的,以后每年的進油量為上一年年底儲油量的,且每年運出噸,設為正式運營第n年年底的儲油量。(其中
(1)求的表達式
(2)為應對突發(fā)事件,該油庫年底儲油量不得少于噸,如果噸,該油庫能否長期按計劃運營?如果可以請加以證明;如果不行請求出最多可以運營幾年。(取

(1);(2)該油庫最多只能運營4年,第五年開始無法正常運營,因此不能長期運營。

解析試題分析:(1)依題意油庫原有儲油量為噸,可得     
                              ……3分
得:                                                       ……5分

是以為公比,首項為的等比數(shù)列                               ……6分

                                                       ……7分
(2)若時,該油庫第n年年底儲油量不少于噸。
,                               ……9分
化簡得:                                                                 ……11分
    
該油庫最多只能運營4年,第五年開始無法正常運營,因此不能長期運營               ……14分
考點:本題考查了等比數(shù)列的實際運用。
點評:數(shù)列的通項公式及應用是數(shù)列的重點內容,數(shù)列的大題對邏輯推理能力有較高的要求,在數(shù)列中突出考查學生的理性思維,這是近幾年新課標高考對數(shù)列考查的一個亮點,也是一種趨勢.隨著新課標實施的深入,高考關注的重點為等差、等比數(shù)列的通項公式,錯位相減法、裂項相消法等求數(shù)列的前n項的和等等.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題12分)已知函數(shù)是冪函數(shù)且在上為減函數(shù),函數(shù)在區(qū)間上的最大值為2,試求實數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù).
(Ⅰ)若為偶函數(shù),求的值;
(Ⅱ)若上有最小值9,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)通常情況下,同一地區(qū)一天的溫度隨時間變化的曲線接近于函數(shù)的圖像.2013年1月下旬荊門地區(qū)連續(xù)幾天最高溫度都出現(xiàn)在14時,最高溫度為;最低溫度出現(xiàn)在凌晨2時,最低溫度為零下.
(Ⅰ)請推理荊門地區(qū)該時段的溫度函數(shù)
的表達式;
(Ⅱ)29日上午9時某高中將舉行期末考試,如果溫度低于,教室就要開空調,請問屆時學校后勤應該送電嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
設函數(shù)滿足:對任意的實數(shù)
(Ⅰ)求的解析式;
(Ⅱ)若方程有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分8分) 某車間生產某機器的兩種配件A和B,生產配件A成本費y與該車間的工人人數(shù)x成反比,而生產配件B成本費y與該車間的工人人數(shù)x成正比,如果該車間的工人人數(shù)為10人時,這兩項費用y和y分別為2萬元和8萬元,那么要使這兩項費用之和最小,該車間的工人人數(shù)x應為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(滿分12分)
某市居民生活用水標準如下:

用水量t(單位:噸)
每噸收費標準(單位:元)
不超過2噸部分
m
超過2噸不超過4噸部分
3
超過4噸部分
n
已知某用戶1月份用水量為3.5噸,繳納水費為7.5元;2月份用水量為6噸,繳納水費為21元.設用戶每月繳納的水費為y元.
(1)寫出y關于t的函數(shù)關系式;
(2)某用戶希望4月份繳納的水費不超過18元,求該用戶最多可以用多少噸水?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在經(jīng)濟學中,函數(shù)的邊際函數(shù)定義為.某公司每月最多生產100臺報警系統(tǒng)裝置,生產臺()的收入函數(shù)為(單位:元),其成本函數(shù)為(單位:元),利潤是收入與成本之差.
(1)求利潤函數(shù)及邊際利潤函數(shù)的解析式,并指出它們的定義域;
(2)利潤函數(shù)與邊際利潤函數(shù)是否具有相同的最大值?說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)某市“環(huán)保提案”對某處的環(huán)境狀況進行了實地調研,據(jù)測定,該處的污染指數(shù)與附近污染源的強度成正比,與到污染源的距離成反比,比例常數(shù)為.現(xiàn)已知相距,兩家化工廠(污染源)的污染強度分別為正數(shù),,它們連線上任意一點C處的污染指數(shù)等于兩化工廠對該處的污染指數(shù)之和.設.
(1) 試將表示為的函數(shù);
(2) 若時,處取得最小值,試求的值.

查看答案和解析>>

同步練習冊答案