已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5],
(1)當(dāng)a=-1時(shí),求函數(shù)的最大值和最小值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-5,5]上是單調(diào)減函數(shù).
解:(1)當(dāng)a=-1時(shí),函數(shù)表達(dá)式是f(x)=x2-2x+2,
∴函數(shù)圖象的對稱軸為x=1,
在區(qū)間(-5,1)上函數(shù)為減函數(shù),在區(qū)間(1,5)上函數(shù)為增函數(shù).
∴函數(shù)的最小值為[f(x)]min=f(1)=1,
函數(shù)的最大值為f(5)和f(-5)中較大的值,比較得[f(x)]max=f(-5)=37
綜上所述,得[f(x)]max=37,[f(x)] min=1(6分)
(2)∵二次函數(shù)f(x)圖象關(guān)于直線x=-a對稱,開口向上
∴函數(shù)y=f(x)的單調(diào)增區(qū)間是(-∞,a],單調(diào)減區(qū)間是[a,+∞),
由此可得當(dāng)[-5,5]?[a,+∞)時(shí),
即-a≥5時(shí),f(x)在[-5,5]上單調(diào)減,解之得a≤-5.
即當(dāng)a≤-5時(shí)y=f(x)在區(qū)間[-5,5]上是單調(diào)減函數(shù).(6分)
分析:(1)當(dāng)a=-1時(shí)f(x)=x2-2x+2,可得區(qū)間(-5,1)上函數(shù)為減函數(shù),在區(qū)間(1,5)上函數(shù)為增函數(shù).由此可得[f(x)]max=37,[f(x)] min=1;
(2)由題意,得函數(shù)y=f(x)的單調(diào)減區(qū)間是[a,+∞),由[-5,5]?[a,+∞)解出a≤-5,即為實(shí)數(shù)a的取值范圍.
點(diǎn)評(píng):本題給出含有參數(shù)的二次函數(shù),討論函數(shù)的單調(diào)性并求函數(shù)在閉區(qū)間上的最值,著重考查了二次函數(shù)的圖象與性質(zhì)和函數(shù)的單調(diào)性等知識(shí),屬于基礎(chǔ)題.