已知函數(shù)f(x)=
ax+1-3a,x<1
x2-2ax,x≥1
,若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得,在定義域內(nèi),函數(shù)f(x)不是單調(diào)的,考慮x≥1時(shí),討論函數(shù)的單調(diào)性,即可求得結(jié)論.
解答: 解:依題意,在定義域內(nèi),函數(shù)f(x)不是單調(diào)函數(shù),分情況討論:
①當(dāng)x≥1時(shí),若f(x)=x2 -ax 不是單調(diào)的,它的對(duì)稱軸為x=a,則有a>1;
②當(dāng)x≥1時(shí),若f(x)=x2 -ax 是單調(diào)的,則f(x)單調(diào)遞增,此時(shí)a≤1.
當(dāng)x<1時(shí),由題意可得f(x)=ax+1-3λa應(yīng)該不單調(diào)遞增,故有a≤0.
綜合得:a的取值范圍是(1,+∞)∪(-∞,0].
故答案為:(1,+∞)∪(-∞,0].
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)點(diǎn)F1(-1,0)且斜率為1的直線l1與直線l2:3x+3y+5=0交于點(diǎn)P.
(Ⅰ)求以F1、F2(1,0)為焦點(diǎn)且過(guò)點(diǎn)P的橢圓C的方程.
(Ⅱ)設(shè)點(diǎn)Q是橢圓C上除長(zhǎng)軸兩端點(diǎn)外的任意一點(diǎn),試問(wèn)在x軸上是否存在兩定點(diǎn)A、B使得直線QA、QB的斜率之積為定值?若存在,請(qǐng)求出定值,并求出所有滿足條件的定點(diǎn)A、B的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex-ax(a為常數(shù))的圖象與y軸交于點(diǎn)A,曲線y=f(x)在點(diǎn)A處的切線斜率為-1.
則函數(shù)f(x)的極小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知過(guò)拋物線y2=4x的焦點(diǎn)F的弦長(zhǎng)為36,求弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos2x+2sinxcosx
(1)求函數(shù)f(x)的最小正周期;
(2)若x∈[0,
π
2
],求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),M為橢圓上的一點(diǎn),△F1F2M的重心為G,內(nèi)心為I,且直線IG平行x軸,則橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若存在正整數(shù)T,對(duì)于任意正整數(shù)n都有an+T=an成立,則稱數(shù)列{an}為周期數(shù)列,周期為T(mén).已知數(shù)列{an}滿足a1=m(m>0),an+1=
an-1,an>1
1
an
,0<an≤1
,關(guān)于下列命題:
①當(dāng)m=
3
4
時(shí),a5=2
②若m=
2
,則數(shù)列{an}是周期為3的數(shù)列;
③對(duì)若a2=4,則m可以取3個(gè)不同的值;
④?m∈Q且m∈[4,5],使得數(shù)列{an}是周期為6.
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)M(x,y)為平面區(qū)域
x-2y+1≥0
x+y+1≥0
x≤0
上的一個(gè)動(dòng)點(diǎn),則x+2y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的頂點(diǎn)A(3,1),B(-1,3)C(2,-1)求:
(1)AB邊上的中線所在的直線方程;
(2)AC邊上的高BH所在的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案