【題目】如圖,在四棱錐中,已知平面,且四邊形為直角梯形,,,點(diǎn),分別是,的中點(diǎn).
(1)求證:平面;
(2)若點(diǎn)為棱上一點(diǎn),且平面平面, 求證:
【答案】(1)見解析; (2)見解析.
【解析】
(1)利用平面法向量和直線的方向向量垂直可得;
(2)先利用平面平面,確定M的位置,再證明垂直.
平面,平面
平面,平面
又因?yàn)?/span>所以,則兩兩垂直,則以為正交基底,建立如圖所示的空間直角坐標(biāo)系
則各點(diǎn)的坐標(biāo)為
因?yàn)辄c(diǎn)分別是,的中點(diǎn),所以
(1)證明:設(shè)平面的一個(gè)法向量為
因?yàn)?/span>
由得,令所以
則
因?yàn)?/span>所以
又平面所以平面.
(2)證明:因?yàn)?/span>為棱上一點(diǎn),所以
設(shè)則,所以
即所以
設(shè)平面的一個(gè)法向量為則
所以消去可得
令則所以
平面平面 則所以
從而因?yàn)?/span>所以
則即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面平面, , , , , .
(Ⅰ)求證: ;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若點(diǎn)在棱上,且平面,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)絡(luò)是一種先進(jìn)的高頻傳輸技術(shù),我國(guó)的技術(shù)發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機(jī),現(xiàn)調(diào)查得到該款手機(jī)上市時(shí)間和市場(chǎng)占有率(單位:%)的幾組相關(guān)對(duì)應(yīng)數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關(guān)于的線性回歸方程為.若用此方程分析并預(yù)測(cè)該款手機(jī)市場(chǎng)占有率的變化趨勢(shì),則最早何時(shí)該款手機(jī)市場(chǎng)占有率能超過(guò)0.5%(精確到月)( )
A.2020年6月B.2020年7月C.2020年8月D.2020年9月
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年寒假期間新冠肺炎肆虐,全國(guó)人民眾志成城抗疫情.某市要求全體市民在家隔離,同時(shí)決定全市所有學(xué)校推遲開學(xué).某區(qū)教育局為了讓學(xué)生“停課不停學(xué)”,要求學(xué)校各科老師每天在網(wǎng)上授課輔導(dǎo),每天共200分鐘.教育局為了了解高三學(xué)生網(wǎng)上學(xué)習(xí)情況,上課幾天后在全區(qū)高三學(xué)生中采取隨機(jī)抽樣的方法抽取了80名學(xué)生(其中男女生恰好各占一半)進(jìn)行問(wèn)卷調(diào)查,按男女生分為兩組,再將每組學(xué)生在線學(xué)習(xí)時(shí)間(分鐘)分為5組,,,,得到如圖所示的頻率分布直方圖.全區(qū)高三學(xué)生有3000人(男女生人數(shù)大致相等),以頻率估計(jì)概率回答下列問(wèn)題:
(1)估計(jì)全區(qū)高三學(xué)生中網(wǎng)上學(xué)習(xí)時(shí)間不超過(guò)40分鐘的人數(shù);
(2)在調(diào)查的80名高三學(xué)生且學(xué)習(xí)時(shí)間不超過(guò)40分鐘的學(xué)生中,男女生按分層抽樣的方法抽取6人.若從這6人中隨機(jī)抽取2人進(jìn)行電話訪談,求至少抽到1名男生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,GH是東西方向的公路北側(cè)的邊緣線,某公司準(zhǔn)備在GH上的一點(diǎn)B的正北方向的A處建設(shè)一倉(cāng)庫(kù),設(shè),并在公路北側(cè)建造邊長(zhǎng)為的正方形無(wú)頂中轉(zhuǎn)站CDEF(其中EF在GH上),現(xiàn)從倉(cāng)庫(kù)A向GH和中轉(zhuǎn)站分別修兩條道路AB,AC,已知AB=AC+1,且.
(1)求關(guān)于的函數(shù)解析式,并求出定義域;
(2)如果中轉(zhuǎn)站四堵圍墻造價(jià)為10萬(wàn)元/km,兩條道路造價(jià)為30萬(wàn)元/km,問(wèn):取何值時(shí),該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價(jià)M最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2022年第24屆冬奧會(huì)將在北京舉行。為了推動(dòng)我國(guó)冰雪運(yùn)動(dòng)的發(fā)展,京西某區(qū)興建了“騰越”冰雪運(yùn)動(dòng)基地。通過(guò)對(duì)來(lái)“騰越”參加冰雪運(yùn)動(dòng)的100員運(yùn)動(dòng)員隨機(jī)抽樣調(diào)查,他們的身份分布如下: 注:將表中頻率視為概率。
身份 | 小學(xué)生 | 初中生 | 高中生 | 大學(xué)生 | 職工 | 合計(jì) |
人數(shù) | 40 | 20 | 10 | 20 | 10 | 100 |
對(duì)10名高中生又進(jìn)行了詳細(xì)分類如下表:
年級(jí) | 高一 | 高二 | 高三 | 合計(jì) |
人數(shù) | 4 | 4 | 2 | 10 |
(1)求來(lái)“騰越”參加冰雪運(yùn)動(dòng)的人員中高中生的概率;
(2)根據(jù)統(tǒng)計(jì),春節(jié)當(dāng)天來(lái)“騰越”參加冰雪運(yùn)動(dòng)的人員中,小學(xué)生是340人,估計(jì)高中生是多少人?
(3)在上表10名高中生中,從高二,高三6名學(xué)生中隨機(jī)選出2人進(jìn)行情況調(diào)查,至少有一名高三學(xué)生的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,點(diǎn)E,F,G分別為棱AB,AA1,C1D1的中點(diǎn).下列結(jié)論中,正確結(jié)論的序號(hào)是______.
①過(guò)E,F,G三點(diǎn)作正方體的截面,所得截面為正六邊形;
②B1D1∥平面EFG;
③BD1⊥平面ACB1;
④異面直線EF與BD1所成角的正切值為;
⑤四面體ACB1D1的體積等于a3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ,其中, 為左、右焦點(diǎn),且離心率,直線與橢圓交于兩不同點(diǎn), .當(dāng)直線過(guò)橢圓右焦點(diǎn)且傾斜角為時(shí),原點(diǎn)到直線的距離為.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395913728/STEM/2d7d70ba831f438cb4e191e234d85c18.png]
(Ⅰ)求橢圓的方程;
(Ⅱ)若,當(dāng)面積為時(shí),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com