精英家教網 > 高中數學 > 題目詳情
如圖,面PAD⊥面ABCD,PA=PD,四邊形ABCD是平行四邊形,E是BC中點,AE=3,則=   
【答案】分析:取AD得中點F,由題意可得故 =0,且,再由 =()•=+=+0,運算求得結果.
解答:解:取AD得中點F,連接CF,由面PAD⊥面ABCD,PA=PD,四邊形ABCD是平行四邊形,E是BC中點,AE=3,
可得CFAE為平行四邊形,PF垂直平面ABCD,故 =0,且
=()•=+=+0=9,
故答案為 9.
點評:本題主要考查兩個向量的加減法的法則,以及其幾何意義,平面和平面垂直的性質,兩個向量的數量積的運算,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD是∠DAB=60°且邊長為a的菱形,側面PAD為正三角形,其所在平面垂直于底面ABCD,若G為AD邊的中點,
(1)求證:BG⊥平面PAD;
(2)求證:AD⊥PB;
(3)若E為BC邊的中點,能否在棱PC上找到一點F,使平面DEF⊥平面ABCD,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,平面PAD⊥平面ABCD,ABCD為正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點.
(1)求證:面EFG⊥面PAB;
(2)求異面直線EG與BD所成的角;
(3)求點A到面EFG的距離.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省高三下學期模擬預測理科數學試卷(解析版) 題型:解答題

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當時,求證:;

(Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質定理得到。當a=1時,底面ABCD為正方形,

又因為,………………2分

,得證。

第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點Q使得

當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

由此知道a=2,  設平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當時,底面ABCD為正方形,

又因為,………………3分

(Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點Q使得

當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

設平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,平面PAD⊥平面ABCD,ABCD為正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點.
(1)求證:面EFG⊥面PAB;
(2)求異面直線EG與BD所成的角;
(3)求點A到面EFG的距離.

查看答案和解析>>

科目:高中數學 來源:2008-2009學年福建省漳州市東山一中高二(上)期中數學試卷(理科)(解析版) 題型:解答題

如圖,平面PAD⊥平面ABCD,ABCD為正方形,△PAD是直角三角形,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點.
(1)求證:面EFG⊥面PAB;
(2)求異面直線EG與BD所成的角;
(3)求點A到面EFG的距離.

查看答案和解析>>

同步練習冊答案