設橢圓C:的右焦點為F,過點F的直線L與C相交于A、B兩點,且L的傾斜角為,則橢圓的離心率為            

 

【答案】

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將圓x2+y2=4壓扁得到橢圓C,方法是將該圓上的點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
3
2
倍.
(1)求橢圓C的方程;
(2)設橢圓C的左焦點為F1,右焦點F2,直線l過點F1且垂直于橢圓的長軸,點P為直線l上的動點,過點P且垂直于l的動直線l1與線段PF2垂直平分線交于點M,求點M的軌跡C′的方程;
(3)設過點(0,-2)但不經過第一象限的直線l2與橢圓C相交于A、B兩點,且
OA
OB
=0
(O是坐標原點),求直線l2的方程.
精英家教網

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
4
+
y2
3
=1

(1)雙曲線與橢圓C具有相同的焦點,且它們的離心率互為倒數(shù),求雙曲線的方程;
(2)設橢圓C的右焦點為F2,A、B是橢圓上的點,且
AF2
=2
F2B
,求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將圓x2+y2=4壓扁得到橢圓C,方法是將該圓上的點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?span id="pyuyfja" class="MathJye">
3
2
倍.
(1)求橢圓C的方程;
(2)設橢圓C的左焦點為F1,右焦點F2,直線l過點F1且垂直于橢圓的長軸,點P為直線l上的動點,過點P且垂直于l的動直線l1與線段PF2垂直平分線交于點M,求點M的軌跡C′的方程;
(3)是否存在過點(0,-2)的直線l2與橢圓C相交于A、B兩點,使以AB為直徑的圓過點O(O是坐標原點),若存在,求直線l2的方程;若不存在,說明理由.
精英家教網

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年北京市西城區(qū)高二(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

已知橢圓C:
(1)雙曲線與橢圓C具有相同的焦點,且它們的離心率互為倒數(shù),求雙曲線的方程;
(2)設橢圓C的右焦點為F2,A、B是橢圓上的點,且,求直線AB的斜率.

查看答案和解析>>

同步練習冊答案