球的半徑為,求其內(nèi)接圓正四面體的體積.
如圖設為球的內(nèi)接正四面體,球心在高上,為正的中心,設正四面體棱長為,在中,,,,過并交于點
,



,得

 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題


已知 ∠==,,求圓的半徑。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


                                                                                  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

表面積為的多面體的每一個面都外切于半徑為的一個球,求這個多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設三棱柱ABC-A1B1C1的體積為V,PQ分別是側(cè)棱AA1、CC1上的點,且PA=QC1,則四棱錐B-APQC的體積為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若圓柱的高擴大為原來的4倍,底面半徑不變,則圓柱的體積擴大為原來的______倍;若圓柱的高不變,底面半徑擴大為原來的4倍,則圓柱的體積擴大為原來的______倍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下圖是一個幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是(  )
A.9πB.10πC.11πD.12π

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正四棱錐P—ABCD的高為4,側(cè)棱長與底面所成的角為,則該正四棱錐的側(cè)面積是                  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一個幾何的三視圖如圖所示:其中,正視圖中△ABC的邊長是2的正三角形,俯視圖為正六邊形,那么該幾何體幾的體積為                 .

查看答案和解析>>

同步練習冊答案