焦點(diǎn)分別為F1,F(xiàn)2的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)M(2,1),且△MF2F1的面積為
3
,求橢圓C的方程.
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:利用橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)M(2,1),且△MF2F1的面積為
3
,可得
4
a2
+
1
b2
=1
,
1
2
×2c×1
=
3
,求出a,b,即可求出橢圓C的方程.
解答: 解:∵橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)M(2,1),且△MF2F1的面積為
3

4
a2
+
1
b2
=1
,
1
2
×2c×1
=
3
,
∵a2=b2+c2,
∴c=
3
,a=
6
,b=
3
,
∴橢圓C的方程為
x2
6
+
y2
3
=1
點(diǎn)評(píng):本題考查橢圓C的方程,考查三角形面積的計(jì)算,確定幾何量是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某城市出租車的計(jì)價(jià)方式如下:乘坐里程在3km以內(nèi)(含3km),只付起步價(jià)8元;超過3km至6km,每公里2元;超過6km,每公里再加收20%車費(fèi),如果價(jià)格y(元)與里程x(km)的函數(shù)關(guān)系為y=
8,0<x≤3
2x+2,3<x≤6
2.4x-6.4,x>6

(1)某人打的里程表顯示為5km,應(yīng)付多少錢?
(2)某人付了39.2元錢,乘了幾公里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)人以6米/秒的速度去追趕停在交通燈前的汽車,當(dāng)他離汽車25米時(shí)交通燈由紅變綠,汽車開始變速直線行駛(汽車與人前進(jìn)方向相同),汽車在時(shí)間t內(nèi)的路程為s=
1
2
t2米,那么,此人( 。
A、可在7秒內(nèi)追上汽車
B、可在9秒內(nèi)追上汽車
C、不能追上汽車,但其間最近距離為14米
D、不能追上汽車,但其間最近距離為7米

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
x+y≥2
x-y≤2
0≤y≤3
則z=2x-y的最小值是(  )
A、5
B、
5
2
C、-5
D、-
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAC=90°,O為AC的中點(diǎn),PO⊥底面ABCD.
(Ⅰ)求證:AD⊥平面PAC;
(Ⅱ)在線段PB上是否存在一點(diǎn)M,使得OM∥平面PAD?若存在,寫出證明過程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2x+
1
x
n展開式中所有的項(xiàng)的系數(shù)為243.
(Ⅰ)求n的值;
(Ⅱ)求展開式中x2項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△O′A′B′為斜二測(cè)畫法做出的△OAB的直觀圖,其中O′A′=A′B′=2則原△OAB的面積是( 。
A、2
2
B、4
C、4
2
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=sin
2
(n∈N*),則a2014-a2015的值為(  )
A、1B、2C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,cos∠A1DD1=
DD1
DA1
=
3
10
10
,DBB1,∠A1DD1是AB1的中點(diǎn).
(Ⅰ)求證:B1C∥平面A1BD;
(Ⅱ)求二面角DO的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案