精英家教網 > 高中數學 > 題目詳情
已知函數,其中a,b為常數.
(1)當a=6,b=3時,求函數f(x)的單調遞增區(qū)間;
(2)若任取a∈[0,4],b∈[0,3],求函數f(x)在R上是增函數的概率.
【答案】分析:(1)將a=6,b=3代入,我們易求出函數的解析式,求出函數的導函數后,令導函數的函數值大于等于0,由此構造關于x的不等式,解不等式即可得到函數f(x)的單調遞增區(qū)間;
(2)這是一個幾何概型問題,我們可以先畫出a∈[0,4],b∈[0,3],對應的平面區(qū)域的面積,然后再求出滿足條件函數f(x)在R上是增函數時對應的平面區(qū)域的面積,計算出對應的面積后,代入幾何概型公式即可得到答案.
解答:解:(1)當a=6,b=3時,,f'(x)=x2-10x+9
令f'(x)=x2-10x+9≥0,(x-1)(x-9)≥0,解得x≤1或x≥9,
故函數f(x)的單調遞增區(qū)間分別為(-∞,1]和[9,+∞)
(2)f'(x)=x2-2(a-1)x+b2
若函數f(x)在R上是增函數,則對于任意x∈R,f'(x)≥0恒成立.
所以,△=4(a-1)2-4b2≤0,即(a+b-1)(a-b-1)≤0
設“f(x)在R上是增函數”為事件A,則事件A對應的區(qū)域為(a,b)|(a+b-1)(a-b-1)≤0
全部試驗結果構成的區(qū)域Ω=(a,b)|0≤a≤4,0≤b≤3,如圖.
所以,
故函數f(x)在R上是增函數的概率為
點評:本題考查的知識點是利用導數研究函數的單調性,幾何概型及概率的應用,其中利用導函數大于等于0,則函數在該區(qū)間上單調遞增,是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數(其中A、B、是實數,且)的最小正周期是2,且當時,取得最大值2;

  (1)、求函數的表達式;

  (2)、在閉區(qū)間上是否存在的對稱軸?如果存在,求出其對稱軸的方程,

        若不存在,說明理由。

查看答案和解析>>

科目:高中數學 來源:2012-2013學年廣東省揭陽一中高三(上)10月月考數學試卷(理科)(解析版) 題型:解答題

已知函數,其中a,b∈R.
(Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線方程為y=3x+1,求函數f(x)的解析式;
(Ⅱ)討論函數f(x)的單調性;
(Ⅲ)若對于任意的,不等式f(x)≤10在上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011年《龍門亮劍》高三數學(理科)一輪復習:第2章第10節(jié)(人教AB通用)(解析版) 題型:解答題

已知函數,其中a,b∈R.
(Ⅰ)若曲線y=f(x)在點P(2,f(2))處的切線方程為y=3x+1,求函數f(x)的解析式;
(Ⅱ)討論函數f(x)的單調性;
(Ⅲ)若對于任意的,不等式f(x)≤10在上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年重慶市高三上學期期末考試文科數學 題型:解答題

(本小題滿分12分)

已知函數(其中a,b為常數且)的反函數的圖象經過點A(4,1)和B(16,3)。

(1)求a,b的值;

(2)若不等式上恒成立,求實數m的取值范圍。

 

 

查看答案和解析>>

同步練習冊答案