分析 由O為球心可得△ABC是直角三角形,AB為球的直徑,利用勾股定理求出BC,代入棱錐的體積公式計算體積.
解答 解:∵三棱錐S-ABC的外接球球心在AB上,
∴OS=OA=OB=1,
∠ACB=90°,
∴AC=$\sqrt{2}$,∴BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=$\sqrt{2}$,
∵SO⊥平面ABC,
∴VS-ABC=$\frac{1}{3}{S}_{△ABC}•OS$=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×1=\frac{1}{3}$.
故答案為:$\frac{1}{3}$.
點評 本題考查了棱錐與外接球的關(guān)系,棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 在(-$\frac{π}{12}$,$\frac{π}{6}$)單調(diào)遞增 | B. | 在(-$\frac{5π}{6}$,-$\frac{7π}{12}$)單調(diào)遞減 | ||
C. | x=-$\frac{5π}{6}$是其一條對稱軸 | D. | (-$\frac{π}{12}$,0)是其一個對稱中心 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $1:\sqrt{3}$ | B. | 1:3 | C. | $1:3\sqrt{3}$ | D. | 1:9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{17}$ | B. | $\sqrt{13}$ | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | $4\sqrt{3}$ | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com