已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,曲線(xiàn)C1ρcos(θ+
π
4
)=2
2
與曲線(xiàn)C2
x=4t2
y=4t
(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
分析:先將極坐標(biāo)方程化為普通方程,再將這兩個(gè)方程聯(lián)立,消去x,得y2-4y-16=0,再由韋達(dá)定理研究.
解答:證:曲線(xiàn)C1的直角坐標(biāo)方程x-y=4,曲線(xiàn)C2的直角坐標(biāo)方程是拋物線(xiàn)y2=4x,(4分)
設(shè)A(x1,y1),B(x2,y2),將這兩個(gè)方程聯(lián)立,消去x,
得y2-4y-16=0?y1y2=-16,y1+y2=4,(6分)
∴x1x2+y1y2=(y1+4)(y2+4)+y1y2=2y1y2+4(y1+y2)+16=0.(8分)
OA
OB
=0
,∴OA⊥OB.(10分)
點(diǎn)評(píng):本題主要考查極坐標(biāo)方程與普通方程的互化和直線(xiàn)與圓錐曲線(xiàn)的位置關(guān)系的問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每小題10分,共計(jì)20分.請(qǐng)?jiān)诖痤}卡指定區(qū)域內(nèi)作答.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
A.選修4-1 幾何證明選講
如圖,⊙O的直徑AB的延長(zhǎng)線(xiàn)與弦CD的延長(zhǎng)線(xiàn)相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC,DE交AB于點(diǎn)F.求證:△PDF∽△POC.
B.選修4-2 矩陣與變換
若點(diǎn)A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣.
C.選修4-4 坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,
曲線(xiàn)C1ρcos(θ+
π
4
)=2
2
與曲線(xiàn)C2
x=4t2
y=4t
(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
D.選修4-5 不等式選講
已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A.如圖,⊙O的直徑AB的延長(zhǎng)線(xiàn)與弦CD的延長(zhǎng)線(xiàn)相交于點(diǎn)P,E為⊙O上一點(diǎn),AE=AC,DE交AB于點(diǎn)F.求證:△PDF∽△POC.
B.已知矩陣A=
.
1-2
3-7
.

(1)求逆矩陣A-1;
(2)若矩陣X滿(mǎn)足AX=
3
1
,試求矩陣X.
C.坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,曲線(xiàn)C1:ρcos(θ+
π
4
)=2
2
與曲線(xiàn)C2
x=4t2
y=4t
,(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.
D.已知x,y,z均為正數(shù),求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,曲線(xiàn)C1 : ρcos(θ+
π
4
)=2
2
與曲線(xiàn)C2
x=4t2
y=4t
,(t∈R)交于A,B兩點(diǎn),則
OA
 , 
OB
=
π
2
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高考模擬試題(1) 題型:解答題

(1)(本小題滿(mǎn)分7分) 選修4一2:矩陣與變換

   若點(diǎn)A(2,2)在矩陣對(duì)應(yīng)變換的作用下得到的點(diǎn)為B(-2,2),求矩陣M的逆矩陣.

    (2)(本小題滿(mǎn)分7分) 選修4一4:坐標(biāo)系與參數(shù)方程

    已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,曲線(xiàn)C1:與曲線(xiàn)C2(t∈R)交于A、B兩點(diǎn).求證:OA⊥OB.

    (3)(本小題滿(mǎn)分7分) 選修4一5:不等式選講

   求證:,.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案