1.正方體A1B1C1D1-ABCD中,BD與B1C所成的角是( 。
A.90°B.60°C.45°D.30°

分析 連接B1D1和D1C,由BD∥B1D1,知∠D1B1C就是異面直線DB與B1C所成角.由△D1B1C是等邊三角形,知異面直線DB與B1C所成角為60°.

解答 解:如圖,連接B1D1,則DB∥D1B1

則∠D1B1C為異面直線BD與B1C所成的角,
連接D1C,在△D1B1C中,D1B1=B1C=CD1
則∠D1B1C=60°,
因此異面直線BD與B1C所成的角為60°.
故選:B.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是空間中直線與直線之間的位置關(guān)系,異面直線及其所成的角,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)f(x)=|sinπx|,則f(1)+f(2)+f(3)+…+f(2010)=( 。
A.0B.$\sqrt{3}$C.-$\sqrt{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)函數(shù)$f(\frac{1}{x})={x^2}-\frac{2}{x}+lnx(x>0)$,則f'(1)=( 。
A.2B.-2C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知直線l過(guò)點(diǎn)P(-2,5),且斜率為$-\frac{3}{4}$,則直線l的方程為3x+4y-14=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2a,b=4,cosB=$\frac{1}{4}$.則邊c的長(zhǎng)度為( 。
A.4B.2C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知-$\frac{π}{6}$<α<$\frac{π}{6}$,且cos(α+$\frac{π}{6}$)=$\frac{4}{5}$,則sin(2α+$\frac{π}{12}$)的值為( 。
A.$\frac{17\sqrt{2}}{50}$B.$\frac{31\sqrt{2}}{50}$C.$\frac{7\sqrt{2}}{10}$D.$\frac{\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.(1)如圖1,在平行四邊形ABCD中,點(diǎn)E是對(duì)角線DB的延長(zhǎng)線上一點(diǎn),且OB=BE.記$\overrightarrow{AB}=\overrightarrow a\;,\;\overrightarrow{AD}=\overrightarrow b$,試用向量$\overrightarrow a\;,\;\overrightarrow b$表示$\overrightarrow{AE}$.
(2)若正方形ABCD邊長(zhǎng)為1,點(diǎn)P在線段AC上運(yùn)動(dòng),求$\overrightarrow{AP}•(\overrightarrow{PB}+\overrightarrow{PD})$的取值范圍.
(3)設(shè)$\overrightarrow{OA}=\;\overrightarrow a,\;\overrightarrow{OB}=\overrightarrow b$,已知$\overrightarrow a•\overrightarrow b=|{\overrightarrow a-\overrightarrow b}|=2$,當(dāng)△AOB的面積最大時(shí),求∠AOB的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2x-$\frac{1}{x}$-alnx(a∈R).
(1)當(dāng)a=3時(shí),求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)-x+2alnx,且g(x)有兩個(gè)極值點(diǎn)x1,x2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.甲、乙、丙三人每人有一張游泳比賽的門(mén)票,已知每張票可以觀看指定的三場(chǎng)比賽中的任一場(chǎng)(三場(chǎng)比賽時(shí)間不沖突),甲乙二人約定他們會(huì)觀看同一場(chǎng)比賽并且他倆觀看每場(chǎng)比賽的可能性相同,又已知丙觀看每一場(chǎng)比賽的可能性也相同,且甲乙的選擇與丙的選擇互不影響.
(1)求三人觀看同一場(chǎng)比賽的概率;
(2)記觀看第一場(chǎng)比賽的人數(shù)是X,求X的分布列和期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案