某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)是他

們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡

越漂亮;現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個圖形包含

個小正方形.

(Ⅰ)求出的值;

(Ⅱ)利用合情推理的“歸納推理思想”,歸納出之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出的表達(dá)式;

(Ⅲ)求的值.

 

【答案】

(Ⅰ);(Ⅱ);(Ⅲ)。

【解析】

試題分析:(Ⅰ)

(Ⅱ)因?yàn)?

由上式規(guī)律,所以得出

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013062010294204664215/SYS201306201030129841236483_DA.files/image009.png">

(Ⅲ)當(dāng)時,,則

考點(diǎn):本題主要考查歸納推理,“裂項(xiàng)相消法”。

點(diǎn)評:中檔題,歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達(dá)的一般性命題。歸納推理問題,往往與數(shù)列知識相結(jié)合,需要綜合應(yīng)用數(shù)列的通項(xiàng)公式、求和公式等求解。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮;現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.則f(n)的表達(dá)式為
f(n)=2n2-2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

14、某少數(shù)民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形,則f(6)=
61

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某少數(shù)民族的刺繡有著悠久的歷史,右圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(1)求出f(5);
(2)利用合情推理的“歸納推理思想”歸納出f(n+1)與f(n)的關(guān)系式,并根據(jù)你得到的關(guān)系式求f(n)的表達(dá)式;
(3)求
1
f(1)
+
1
f(2)-1
+
1
f(3)-1
+…+
1
f(n)-1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某少數(shù)民族的刺繡有著悠久的歷史,圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(Ⅰ)求出f(5);
(Ⅱ)利用合情推理的“歸納推理思想”歸納出f(n+1)與f(n)的關(guān)系式,并根據(jù)你得到的關(guān)系式求f(n)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三高考壓軸考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

某少數(shù)民族的刺繡有著悠久的歷史,下圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮;現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個圖形包含個小正方形,則  

 

查看答案和解析>>

同步練習(xí)冊答案