數(shù)列滿足:
(I)求證:
(Ⅱ)令
(1)求證:是遞減數(shù)列;(2)設的前項和為求證:
同下
解:(Ⅰ)
(1)時  時不等式成立    
(2)假設時不等式成立,即


時不等式成立                      
由(1)(2)可知對都有       
(Ⅱ)(1)

是遞減數(shù)列                           
(2)


                              
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某市出租車的計價標準為元/km,起步價為10元,即最初的4km(不含4千米)計費10元.如果某人乘坐該市的出租車去往14 km處的目的地,且一路暢通,等候時間為0,需要支付多少車費?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下圖為某三岔路口交通環(huán)島的簡化模型,在某高峰時段,單位時間進出路口的機動車輛數(shù)如圖所示(20,30;35,30;55,50),圖中分別表示該時段單位時間通過路段的機動車輛數(shù)(假設:單位時間內(nèi),在上述路段中,同一路段上駛?cè)肱c駛出的車輛數(shù)相等),則(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是等差數(shù)列,若,,則(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知Sn=1++…+,(n∈N*),設f(n)=S2n+1Sn+1,試確定實數(shù)m的取值范圍,使得對于一切大于1的自然數(shù)n,不等式: 
f(n)>[logm(m-1)]2[log(m1)m2恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知函數(shù).(Ⅰ) 求f –1(x);(Ⅱ) 若數(shù)列{an}的首項為a1=1,(nÎN+),求{an}的通項公式an;(Ⅲ) 設bn=an+12+an+22+¼+a2n+12,是否存在最小的正整數(shù)k,使對于任意nÎN+bn<成立.若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在直角坐標系中,O是坐標原點,P1(x1y1)、P2(x2,y2)是第一象限的兩個點,若1,x1,x2,4依次成等差數(shù)列,而1,y1,y2,8依次成等比數(shù)列,則△OP1P2的面積是_________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

數(shù)列中,,且,(n∈N*),求通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

等差數(shù)列中,,則的值為(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案