某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計算得Χ2≈3.918,經(jīng)查對臨界值表知P(Χ2≥3.841)≈0.05.四名同學(xué)做出了下列判斷:
P:有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
q:若某人未使用該血清,那么他在一年中有95%的可能性得感冒
s:這種血清預(yù)防感冒的有效率為95%
r:這種血清預(yù)防感冒的有效率為5%
則下列命題中真命題的序號是
 

①p且(非q);②(非p)且q;③[(非p)且(非q)]且(r或s);④[p且(非r)]且[(非q)或s].
分析:確定p是真命題,q,s,r是假命題,再利用命題真假判斷的結(jié)論可得結(jié)論.
解答:解:查對臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”,即p是真命題;95%僅是指“血清與預(yù)防感冒”可信程度,但也有“在100個使用血清的人中一個患感冒的人也沒有”的可能,故q,s,r是假命題,所以①p且(非q)為真;②(非p)且q為假;③[(非p)且(非q)]且(r或s)為假;④[p且(非r)]且[(非q)或s]為真,所以真命題的序號是①④.
故答案為:①④.
點(diǎn)評:獨(dú)立性檢驗中研究兩個量是否有關(guān),這是一種統(tǒng)計關(guān)系,不能認(rèn)為是因果關(guān)系.利用獨(dú)立性檢驗不僅能考查兩個變量是否有關(guān)系,而且能較精確地給出這種判斷的可靠性程度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、某醫(yī)療研究所為了檢驗新開發(fā)的流感疫苗對甲型H1N1流感的預(yù)防作用,把1000名注射了疫苗的人與另外1000名未注射疫苗的人的半年的感冒記錄作比較,提出假設(shè)H0:“這種疫苗不能起到預(yù)防甲型H1N1流感的作用”,并計算出P(Χ2≥6.635)≈0.01,則下列說法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5、某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計算得Χ2≈3.918,經(jīng)查對臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號是
(1)

(1)有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒
(3)這種血清預(yù)防感冒的有效率為95%(4)這種血清預(yù)防感冒的有效率為5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計算得Χ2≈3.918,經(jīng)查對臨界值表知P(Χ2≥3.841)≈0.05.則下列四個結(jié)論中,正確結(jié)論的序號是

①有3.918%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”;
②有5%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”;
③有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”;
④有99%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”.
x 0 1 3 4
y 2.2 4.3 4.8 6.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未使用血清的人一年中的感冒記錄作比較,提出假設(shè)H:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計算的K2≈3.918,經(jīng)查臨界值表知P(K2≥3.841)≈0.05.則下列表述中正確的是(  )

查看答案和解析>>

同步練習(xí)冊答案