【題目】已知函數(shù)f(x)= 的定義域為集合A,函數(shù)g(x)=lg(﹣x2+2x+m)的定義域為集合B.
(1)當m=3時,求A∩(RB)
(2)若A∩B={x|﹣1<x<4},求實數(shù)m的值.
【答案】
(1)解:函數(shù) 的定義域為集合A={x|﹣1<x≤5}
函數(shù)g(x)=lg(﹣x2+2x+3)的定義域為集合B={x|﹣1<x<3}
CRB={x|x≤﹣1或x≥3}
∴A∩(RB)=[3,5]
(2)解:∵A∩B={x|﹣1<x<4},A={x|﹣1<x≤5}而﹣x2+2x+m=0的兩根之和為2
∴B={x|﹣2<x<4}
∴m=8
答:實數(shù)m的值為8
【解析】(1)先分別求出函數(shù)f(x)和g(x)的定義域,再求出集合B的補集,再根據(jù)交集的定義求出所求;(2)先求出集合A,再根據(jù)A∩B的范圍以及結(jié)合函數(shù)g(x)的特點確定出集合B,然后利用根與系數(shù)的關(guān)系求出m的值.
【考點精析】關(guān)于本題考查的集合的交集運算和交、并、補集的混合運算,需要了解交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立;求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣2ax+b(a>0)在區(qū)間[﹣1,4]上有最大值10和最小值1.設(shè)g(x)= .
(1)求a、b的值;
(2)證明:函數(shù)g(x)在[ ,+∞)上是增函數(shù);
(3)若不等式g(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=log4(4x+1)+ax(a∈R).
(1)若函數(shù)f(x)是定義在R上的偶函數(shù),求a的值;
(2)若不等式f(x)+f(﹣x)≥mt+m對任意x∈R,t∈[﹣2,1]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,左、右頂點分別為為直徑的圓O過橢圓E的上頂點D,直線DB與圓O相交得到的弦長為.設(shè)點,連接PA交橢圓于點C,坐標原點為O.
(I)求橢圓E的方程;
(II)若三角形ABC的面積不大于四邊形OBPC的面積,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知Sn是等差數(shù)列{an}的前n項和,且S6>S7>S5 , 給出下列五個命題:①d<1;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項為S11;⑤|a6|>|a7|.其中正確命題有 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).
(1)若函數(shù)f(x)的定義域和值域均為[1,a],求實數(shù)a的值;
(2)若f(x)在區(qū)間(﹣∞,2],上是減函數(shù),且對任意的x1 , x2∈[1,a+1],總有|f(x1)﹣f(x2)|≤4,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
為慶!2017年中國長春國際馬拉松賽”,某單位在慶祝晚會中進行嘉賓現(xiàn)場抽獎活動.抽獎盒中裝有大小相同的6個小球,分別印有“長春馬拉松”和“美麗長春”兩種標志,搖勻后,規(guī)定參加者每次從盒中同時抽取兩個小球(登記后放回并搖勻),若抽到的兩個小球都印有“長春馬拉松”即可中獎,并停止抽獎,否則繼續(xù),但每位嘉賓最多抽取3次.已知從盒中抽取兩個小球不都是“美麗長春”標志的概率為.
(Ⅰ)求盒中印有“長春馬拉松”標志的小球個數(shù);
(Ⅱ)用η表示某位嘉賓抽獎的次數(shù),求η的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對應的邊分別為a,b,c,sinC+sin(A﹣B)=3sin2B.若 ,則 =( )
A.
B.3
C. 或3
D.3或
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com