【題目】已知圓:,直線: .
(1)設(shè)點是直線上的一動點,過點作圓的兩條切線,切點分別為,求四邊形的面積的最小值;
(2)過作直線的垂線交圓于點, 為關(guān)于軸的對稱點,若是圓上異于的兩個不同點,且滿足: ,試證明直線的斜率為定值.
【答案】(1) (2) 見解析
【解析】試題分析:(1) 四邊形PAOB為兩個對稱的直角三角形構(gòu)成,其中OA與OB為圓的半徑,其值固定不變,故到當(dāng)PO最小值,四邊形PAOB的面積最小,即圓心到直線的距離最小,利用點到直線的距離公式求出PO的長,利用勾股定理求出此時AP的長,利用三角形的面積公式求出兩直角三角形的面積,即為四邊形PAOB面積的最小值.
(2) , ,設(shè)直線的斜率為,則 斜率為,聯(lián)立消得: ,得,
同理,從而得到直線的斜率為定值.
試題解析:
(1)設(shè)四邊形的面積為, ,
,所以,當(dāng)最小時, 就最小,
,所以: .
(2)直線的方程為: ,代入,且在第一象限,
得則.設(shè), ,
證法1: ,
設(shè)直線的斜率為,則 斜率為,
, ,
聯(lián)立消得: ,
,得,
同理,
,
所以,直線的斜率為定值1.
證法2: , 的弧長等于的弧長,則,
所以: ,
展開得: ,
因為在圓上,則滿足: ,
所以整理為: ,即: ,
故,為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點M(0,1)的直線l交橢圓C: 于A,B兩點,F(xiàn)1為橢圓的左焦點,當(dāng)△ABF1周長最大時,直線l的方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線.
(1)若直線在軸上的截距為-2,求實數(shù)的值,并寫出直線的截距式方程;
(2)若過點且平行于直線的直線的方程為: ,求實數(shù)的值,并求出兩條平行直線之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M: 和點 ,動圓P經(jīng)過點N且與圓M相切,圓心P的軌跡為曲線E.
(1)求曲線E的方程;
(2)點A是曲線E與x軸正半軸的交點,點B,C在曲線E上,若直線AB,AC的斜率分別是k1 , k2 , 滿足k1k2=9,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)銷一批進價為每件30元的商品,在市場試銷中發(fā)現(xiàn),此商品的銷售單價x(元)與日銷售量y(件)之間有如下表所示的關(guān)系:
x | 30 | 40 | 45 | 50 |
y | 60 | 30 | 15 | 0 |
在所給的坐標(biāo)圖紙中,根據(jù)表中提供的數(shù)據(jù),描出實數(shù)對(x,y)的對應(yīng)點,并確定y與x的一個函數(shù)關(guān)系式;
(2)設(shè)經(jīng)營此商品的日銷售利潤為P元,根據(jù)上述關(guān)系,寫出P關(guān)于x的函數(shù)關(guān)系式,并指出銷售單價x為多少元時,才能獲得最大日銷售利潤?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C過點M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定義域內(nèi)有兩個不同的極值點.
(Ⅰ)求a的取值范圍;
(Ⅱ)設(shè)兩個極值點分別為x1 , x2 , 證明:x1x2>e2 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com