【題目】某市文化部門為了了解本市市民對當(dāng)?shù)氐胤綉蚯欠裣矏,?5-65歲的人群中隨機抽樣了人,得到如下的統(tǒng)計表和頻率分布直方圖.

(1)寫出其中的、的值;

(2)若從第1,2,3組回答喜歡地方戲曲的人中用分層抽樣的方法抽取6人,求這三組每組分別抽取多少人?

(3)在(2)抽取的6人中隨機抽取2人,求這2人都是第3組的概率

【答案】(1) , , , ;(2) , ;(3) .

【解析】試題分析:(1)利用頻率分布表及頻率分布直方圖能求出的值;(2)組喜歡地方戲曲的人數(shù)比,用分層抽樣的分法從這三組中抽取人,能求出這三組每組分別抽取多少人;(3)第三組抽到人,記為,第一組和第二組人記為從這六人中隨機抽取人,利用列舉法能求出抽取人年齡都在的概率

試題解析:(1)由表可知第3組,第4組 的人數(shù)分別為,,再根據(jù)直圖可知第1組、第2組的 人數(shù)也為人,且抽樣總?cè)藬?shù).

所以第5組的人數(shù)為,且 , , , .

(2)因為第1,2,3組喜歡地方戲曲的人數(shù)比為,那么用分層抽樣的方法從這三組中抽取6人,第1組應(yīng)抽取1人,第2組應(yīng)抽取2人,第3組應(yīng)抽取3人. (3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于x的方程:
(1)lgx+lg(x﹣3)=1;
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某商品的進貨單價為1元/件,商戶甲往年以單價2元/件銷售該商品時,年銷量為1萬件.今年擬下調(diào)銷售單價以提高銷量增加收益.據(jù)估算,若今年的實際銷售單價為元/件(),則新增的年銷量(萬件).

(1)寫出今年商戶甲的收益(單位:萬元)與的函數(shù)關(guān)系式;

(2)商戶甲今年采取降低單價提高銷量的營銷策略,是否能獲得比往年更大的收益(即比往年收益更多)?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校歌詠比賽中,甲班、乙班、丙班、丁班均可從、、、四首不同曲目中任選一首.

(1)求甲、乙兩班選擇不同曲目的概率;

(2)設(shè)這四個班級總共選取了首曲目,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點A(-1,2)為圓心的圓與直線l1x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點,QMN的中點.

(1)求圓A的方程;

(2)當(dāng)|MN|=2時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直三棱柱的底面為正三角形,分別是,上的點,且滿足,

(1)求證:平面平面;

(2)設(shè)直三棱柱的棱均相等,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在多面體中,四邊形與四邊形均為邊長為2的正方形,為等腰直角三角形,,且平面平面,平面平面

(1)求證:平面平面;

(2)求多面體體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 是定義在(﹣1,1)上是奇函數(shù),且
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題。
(1)已知函數(shù)f(x)=4x2﹣kx﹣8在[5,20]上具有單調(diào)性,求實數(shù)k的取值范圍.
(2)關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩個不同的實根,且一個大于4,另一個小于4,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案