17.已知函數(shù)f(x)=ex-kx2,x∈R.
(1)設(shè)函數(shù)g(x)=f(x)(x2-bx+2),當(dāng)k=0時,若函數(shù)g(x)有極值,求實數(shù)b的取值范圍;
(2)若f(x)在區(qū)間(0,+∞)上單調(diào)遞增,求k的取值范圍.

分析 (1)當(dāng)k=0時,求得g(x)和g′(x)將函數(shù)f(x)有極值,轉(zhuǎn)化成g′(x)=0在R上有解,根據(jù)二次函數(shù)性質(zhì)求得b的取值范圍;
(2)f(x)在區(qū)間(0,+∞)上單調(diào)遞增,等價于f′(x)=ex-2kx≥0(x>0)恒成立,分k≤0,0<k≤$\frac{1}{2}$,k>$\frac{1}{2}$三種情況進行討論,前兩種情況易作出判斷,k>$\frac{1}{2}$時,利用導(dǎo)數(shù)求出最值解不等式即可.

解答 解:(1)當(dāng)k=0時,g(x)=ex(x2-bx+2),g′(x)=ex[x2+(2-b)x+2-b],
∵函數(shù)f(x)有極值,
∴g′(x)=0在R上有解,
設(shè)h(x)=x2+(2-b)x+2-b,由二次函數(shù)圖象及性質(zhì)可知:△≥0,
(2-b)2-4(2-b)≥0,解得:b≥2或b≤-2;
實數(shù)b的取值范圍(-∞,-2)∪(2,+∞);
(2)f′(x)=ex-2kx,將f(x)在區(qū)間(0,+∞)上單調(diào)遞增,轉(zhuǎn)化成f′(x)≥0(x>0)恒成立,
若k≤0,顯然f′(x)>0,f(x)在區(qū)間(0,+∞)上單調(diào)遞增;
記φ(x)=ex-2kx,則φ′(x)=ex-2k,
當(dāng)0<k≤$\frac{1}{2}$時,
∵ex>e0=1,2k≤1,
∴φ′(x)>0,則φ(x)在(0,+∞)上單調(diào)遞增,
于是f′(x)=φ(x)>φ(0)=1>0,∴f(x)在(0,+∞)上單調(diào)遞增;
當(dāng)k>$\frac{1}{2}$時,φ(x)=ex-2kx在(0,ln2k)上單調(diào)遞減,在(ln2k,+∞)上單調(diào)遞增,
于是f′(x)=φ(x)≥φ(ln2k)=eln2k-2kln2k,
由eln2k-2kln2k≥0,得2k-2kln2k≥0,則 $\frac{1}{2}$≤k≤$\frac{e}{2}$,
綜上,k的取值范圍為(-∞,$\frac{e}{2}$].

點評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值及不等式證明等知識,考查學(xué)生綜合運用知識分析問題解決問題的能力,綜合性較強,對能力要求很高,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知拋物線C:y2=8x的焦點為F,點 M(-2,2),過點F且斜率為k的直線與C交于 A,B兩點,若∠AMB=90°,則k=( 。
A.$\sqrt{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求下面函數(shù)的最大值.
(1)y=3x-2x2+1;
(2)y=-$\frac{2}{x}$,x∈[-3,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,PA⊥平面ABCD,AB=2,PA=$\frac{2\sqrt{3}}{3}$,E為BC中點,F(xiàn)在棱PD上,則當(dāng)EF與平面PAD所成角最大時,點B到平面AEF的距離為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某市在對學(xué)生的綜合素質(zhì)評價中,將其測評結(jié)果分為“優(yōu)秀、合格、不合格”三個等級,其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”.
(1)某校高一年級有男生500人,女生400人,為了解性別對該綜合素質(zhì)評價結(jié)果的影響,采用分層抽樣的方法從高一學(xué)生中抽取45名學(xué)生的綜合素質(zhì)評價結(jié)果,其各個等級的頻數(shù)統(tǒng)計如下表:
等級優(yōu)秀合格不合格
男生(人)15x5
女生(人)153y
根據(jù)表中統(tǒng)計的數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“綜合素質(zhì)評價測評結(jié)果為優(yōu)秀與性別有關(guān)”?
優(yōu)秀男生女生總計
非優(yōu)秀
總計
(2)以(1)中抽取的45名學(xué)生的綜合素質(zhì)評價等級的頻率作為全市各個評價等級發(fā)生的概率,且每名學(xué)生是否“優(yōu)秀”相互獨立,現(xiàn)從該市高一學(xué)生中隨機抽取3人.
①求所選3人中恰有2人綜合素質(zhì)評價為“優(yōu)秀”的概率;
②記X表示這3人中綜合素質(zhì)評價等級為“優(yōu)秀”的個數(shù),求X的數(shù)學(xué)期望.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.72B.80C.86D.92

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如果根據(jù)數(shù)學(xué)成績是否及格與課后習(xí)題練習(xí)量的多少列聯(lián)表,得到K2的觀測值k=6.714,則判斷數(shù)學(xué)成績是否及格與課后習(xí)題練習(xí)量的多少有關(guān),那么這種判斷出錯的可能性為( 。
A.10%B.2.5%C.1%D.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(t)=t2-t+2.
(1)當(dāng)t∈R時,求f(t)的值域.
(2)當(dāng)t∈[-1,2]時,求f(t)的值域.
(3)令t=sinx,求f(sinx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項和為Sn,已知a1=1,an+1=$\frac{n+2}{n}$Sn(n∈N*).
(1)證明:數(shù)列{${\frac{S_n}{n}}\right.$}是等比數(shù)列;
(2)令bn=ln$\frac{a_n}{n}$,求數(shù)列{bn}的前n項和為Tn

查看答案和解析>>

同步練習(xí)冊答案