【題目】已知函數(shù)fx,若函數(shù)fx)的值域?yàn)?/span>R,則實(shí)數(shù)a的取值范圍是_____

【答案】[5,4]

【解析】

函數(shù)yx+4的值域?yàn)椋ī仭蓿?/span>a+4),討論a1a1兩種情況,分別計算yx22x的值域得到答案.

函數(shù)yx+4在(﹣∞,a)上為增函數(shù),值域?yàn)椋ī仭蓿?/span>a+4).

a1,yx22xxa)的值域?yàn)?/span>[1,+∞),

要使函數(shù)fx)的值域?yàn)?/span>R,則a+4≥﹣1,得a≥﹣5,∴﹣5a1;

a1,yx22xxa)的值域?yàn)?/span>[a22a+∞),

要使函數(shù)fx)的值域?yàn)?/span>R,則a+4a22a,解得﹣1a4,∴1a4

綜上,使函數(shù)fx)的值域?yàn)?/span>R的實(shí)數(shù)a的取值范圍是[54]

故答案為:[54]

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019女排世界杯于2019914日到929日舉行,中國女排以十一勝衛(wèi)冕女排世界杯冠軍,四人進(jìn)入最佳陣容,女排精神,已經(jīng)是一種文化.為了了解某市居民對排球知識的了解情況,某機(jī)構(gòu)隨機(jī)抽取了100人參加排球知識問卷調(diào)查,將得分情況整理后作出的直方圖如下:

1)求圖中實(shí)數(shù)的值,并估算平均得分(每組數(shù)據(jù)以區(qū)間的中點(diǎn)值為代表);

2)得分在90分以上的稱為鐵桿球迷,以樣本頻率估計總體概率,從該市居民中隨機(jī)抽取4人,記這四人中鐵桿球迷的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,四邊形滿足,點(diǎn)的中點(diǎn),點(diǎn)邊上的動點(diǎn),且.

(1)求證:平面平面

(2)是否存在實(shí)數(shù),使得二面角的余弦值為?若存在,試求出實(shí)數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxsin(x+3φ)是奇函數(shù),其中 ,則函數(shù)g(x)=cos(2x-φ)的圖象( 。

A.關(guān)于點(diǎn) 對稱B.關(guān)于軸對稱

C.可由函數(shù)f(x)的圖象向右平移 個單位得到D.可由函數(shù)f(x)的圖象向左平移個單位得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為,,點(diǎn)是橢圓的左右頂點(diǎn),點(diǎn)是橢圓上一動點(diǎn),的周長為6,且直線,的斜率之積為

1)求橢圓的方程;

2)若、為橢圓上位于軸同側(cè)的兩點(diǎn),且,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角AB,C所對的邊分別為a,bc,滿足(2bc)cosAacosC

1)求角A;

2)若,b+c5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p1:函數(shù)y2x2xR上為增函數(shù),p2:函數(shù)y2x2xR上為減函數(shù),則在命題q1p1∨p2,q2p1∧p2q3(p1)∨p2q4p1∧(p2)中,真命題是

A.q1q3

B.q2,q3

C.q1,q4

D.q2q4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, 、分別為、的中點(diǎn), , .

(1)求證: 平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求的定義域;

(2)判斷的奇偶性并給予證明;

(3)求關(guān)于x的不等式的解集.

查看答案和解析>>

同步練習(xí)冊答案