(2014·咸寧模擬)雙曲線-=1的漸近線與圓x2+(y-2)2=1相切,則雙曲線離心率為(  )
A.B.C.2D.3
C
因?yàn)殡p曲線-=1(a>0,b>0)的漸近線為bx±ay=0,
依題意,直線bx±ay=0與圓x2+(y-2)2=1相切,
設(shè)圓心(0,2)到直線bx±ay=0的距離為d,
則d===1,
所以雙曲線離心率e==2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

無論為任何實(shí)數(shù),直線與雙曲線恒有公共點(diǎn).
(1)求雙曲線的離心率的取值范圍;
(2)若直線過雙曲線的右焦點(diǎn),與雙曲線交于兩點(diǎn),并且滿足,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線的中心在坐標(biāo)原點(diǎn),離心率等于, 一個焦點(diǎn)的坐標(biāo)為,則此雙曲線的方程是                      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)雙曲線,離心率,右焦點(diǎn).方程的兩個實(shí)數(shù)根分別為,則點(diǎn)與圓的位置關(guān)系(  )
A.在圓外B.在圓上C.在圓內(nèi)D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2013•重慶)設(shè)雙曲線C的中心為點(diǎn)O,若有且只有一對相交于點(diǎn)O,所成的角為60°的直線A1B1和A2B2,使|A1B1|=|A2B2|,其中A1、B1和A2、B2分別是這對直線與雙曲線C的交點(diǎn),則該雙曲線的離心率的取值范圍是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從雙曲線的左焦點(diǎn)引圓的切線,切點(diǎn)為,延長交雙曲線右支于點(diǎn),若為線段的中點(diǎn),為坐標(biāo)原點(diǎn),則=            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y2=2px(p>0)上一點(diǎn)M(1,m)(m>0)到其焦點(diǎn)的距離為5,雙曲線-y2=1的左頂點(diǎn)為A,若雙曲線的一條漸近線與直線AM平行,則實(shí)數(shù)a的值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的中心在原點(diǎn),離心率為2,一個焦點(diǎn)為F(-2,0).
(1)求雙曲線方程;
(2)設(shè)Q是雙曲線上一點(diǎn),且過點(diǎn)F,Q的直線l與y軸交于點(diǎn)M,若= 2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的雙曲線的漸近線方程為,則此雙曲線的離心率為(     )
A.B.C.D.5

查看答案和解析>>

同步練習(xí)冊答案