【題目】已知函數(shù).

)若函數(shù)圖象在點處的切線方程為,求的值;

)求函數(shù)的極值;

)若,,且對任意的恒成立,求實數(shù)的取值范圍.

【答案】(;(;(.

【解析】

試題分析:()利用導(dǎo)數(shù)的幾何意義,先對進行求導(dǎo),再利用,可求出的值;()求出的表達式,再分別對兩種進行討論,可得到函數(shù)的極值;()函數(shù)恒成立問題,兩種思路,一種是,另一種是用參變分離的方法求解.

試題解析:(,.

函數(shù)圖象在點處的切線方程為.

)由題意可知,函數(shù)的定義域為,

.

時,,,為增函數(shù),為減函數(shù),所以,.

時,,,為減函數(shù),,為增函數(shù),所以,.

對任意的,恒成立等價于時,對任意的,成立,當時,由()可知,函數(shù)上單調(diào)遞增,在上單調(diào)遞減,而,所以的最小值為,,當時,,時,,顯然不滿足,

時,令得,,,

)當,即時,在,所以單調(diào)遞增,所以,只需,得,所以.

)當,即時,在,,單調(diào)遞增,在,,單調(diào)遞減,所以,

只需,得,所以.

)當,即時,顯然在單調(diào)遞增,,不成立,

綜上所述,的取值范圍是.

(用分離參數(shù)做答酌情給分)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目, 兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數(shù)據(jù),繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊第六位選手的成績沒有給出,并且告知大家隊的平均分比隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得“晉級”.

(1)根據(jù)莖葉圖中的數(shù)據(jù),求出隊第六位選手的成績;

(2)主持人從隊所有選手成績中隨機抽2個,求至少有一個為“晉級”的概率;

(3)主持人從兩隊所有選手成績分別隨機抽取2個,記抽取到“晉級”選手的總?cè)藬?shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線處的切線與直線平行.

1討論的單調(diào)性;

2,上恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)若對任意,都有成立,求的值值范圍;

(2)若先將的圖象上每個點縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,然后再向左平移個單位得到函數(shù)的圖象,求函數(shù)在區(qū)間內(nèi)的所有零點之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的短軸長為,點在C上,平行于OM的直線交橢圓C于不同的兩點A,B.

1求橢圓的方程;

2證明:直線MA,MB與軸總圍成等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在D上的函數(shù)f(x)滿足:對任意x∈D,存在常數(shù)M>0,都有-M<f(x)<M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界。

(Ⅰ)判斷函數(shù)f(x)=-2x+2,x∈[0,2]是否是有界函數(shù),請說明理由;

(Ⅱ)若函數(shù)f(x)=1++,x∈[0,+∞)是以3為上界的有界函數(shù),求實數(shù)a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列、滿足.

(1)求;

(2)設(shè),求數(shù)列通項公式;

(3)設(shè),不等式成立時,求實數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校名教師參加我縣六城同創(chuàng)干部職工進網(wǎng)絡(luò),服務(wù)群眾進社區(qū)活動,他們的年齡均在25歲至50歲之間,按年齡分組:第一組,第二組,第三組,第四組,第五組,得到的頻率分布直方圖如圖所示:

上表是年齡的頻數(shù)分布表.

(1)求正整數(shù)的值;

(2)根據(jù)頻率分布直方圖估計我校這名教師年齡的中位數(shù)和平均數(shù);

(3)從第一、二組用分層抽樣的方法抽取4人,現(xiàn)在從這4人中任取兩人接受咸豐電視臺的采訪,求從這4人中選取的兩人年齡均在第二組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由三棱柱和四棱錐構(gòu)成的幾何體中, 平面 , , ,平面平面

(Ⅰ)求證: ;

(Ⅱ)若為棱的中點,求證: 平面;

(Ⅲ)在線段上是否存在點,使直線與平面所成的角為?若存在,求的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案