20.已知α∈[$\frac{π}{2}$,$\frac{3π}{2}$],β∈[-$\frac{π}{2}$,0],且(α-$\frac{π}{2}$)3-sinα-2=0,8β3+2cos2β+1=0,則sin($\frac{α}{2}$+β)的值為( 。
A.0B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.1

分析 構(gòu)造思想,轉(zhuǎn)化為函數(shù)問題,零點(diǎn)與方程的根的關(guān)系,利用單調(diào)性找出α,β的關(guān)系,求解即可.

解答 解:∵(α-$\frac{π}{2}$)3-sinα-2=0,
可得:(α-$\frac{π}{2}$)3-cos($α-\frac{π}{2}$)-2=0,即($\frac{π}{2}$-α)3+cos($\frac{π}{2}-α$)+2=0
由8β3+2cos2β+1=0,
得(2β)3+cos2β+2=0,
∴可得f(x)=x3+cosx+2=0,
其${x}_{1}=\frac{π}{2}-α$,x2=2β.
∵α∈[$\frac{π}{2}$,$\frac{3π}{2}$],β∈[-$\frac{π}{2}$,0],
∴$\frac{π}{2}-α$∈[-π,0],2β∈[-π,0]
可知函數(shù)f(x)在x∈[-π,0]是單調(diào)增函數(shù),方程x3+cosx+2=0只有一個解,
可得$\frac{π}{2}-α=2β$,即$α+2β=\frac{π}{2}$,
∴$\frac{α}{2}+β=\frac{π}{4}$,
那么sin($\frac{α}{2}$+β)=sin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$.
故選:B.

點(diǎn)評 本題主要考查了函數(shù)的轉(zhuǎn)化思想,零點(diǎn)與方程的根的關(guān)系,單調(diào)性的運(yùn)用.屬于偏難的題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題“$?{x_0}∈R,x_0^3-x_0^2+1>0$”的否定是( 。
A.?x∈R,x3-x2+1≤0B.$?{x_0}∈R,x_0^3-x_0^2+1<0$
C.$?{x_0}∈R,x_0^3-x_0^2+1≤0$D.$?x∈R,x_0^3-x_0^2+1>0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知sin(θ+kπ)=-2cos(θ+kπ)(k∈Z),則$\frac{4sinθ-2cosθ}{5cosθ+3sinθ}$=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.命題“存在實數(shù)x,y,使得x+y>1”是特稱命題.(填全稱命題或存在命題),用符號表示?x,y∈R,x+y>1..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=xln x-a(x-1),其中a∈R,求函數(shù)f(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{2}$x2-x+alnx,a∈R.
(Ⅰ)若函數(shù)f(x)為定義域上的單調(diào)函數(shù),求實數(shù)a的取值范圍;
(Ⅱ)當(dāng)0<α<$\frac{2}{9}$時,函數(shù)f(x)的兩個極值點(diǎn)為x1,x2,且x1<x2.證明:$\frac{f({x}_{1})}{{x}_{2}}$>-$\frac{5}{12}$-$\frac{1}{3}$ln3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)y=asinx+2b(a>0)的最大值為4,最小值為0,則a+b=3;此時函數(shù)y=bsinax的最小正周期為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=x3+x在x=1處的切線為m.
(1)求切線m的方程;
(2)若曲線g(x)=sinx+ax在點(diǎn)A(0,g(0))處的切線與m垂直,求實數(shù)a的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某公司在新年晚會上舉行抽獎活動,有甲,乙兩個抽獎方案供員工選擇.
方案甲:員工最多有兩次抽獎機(jī)會,每次抽獎的中獎率均為$\frac{4}{5}$,第一次抽獎,若未中獎,則抽獎結(jié)束,若中獎,則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎,規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎金,不進(jìn)行第二次抽獎;若正面朝上,員工則須進(jìn)行第二次抽獎,且在第二次抽獎中,若中獎,則獲得1000元;若未中獎,則不能獲得獎金.
方案乙:員工連續(xù)三次抽獎,每次中獎率均為$\frac{2}{5}$,每次中獎均可獲得獎金400元.
(Ⅰ)求某員工選擇方案甲進(jìn)行抽獎所獲獎金X(元)的分布列;
(Ⅱ)試比較某員工選擇方案乙與選擇方案甲進(jìn)行抽獎,哪個方案更劃算?
(Ⅲ)已知公司共有100人在活動中選擇了方案甲,試估計這些員工活動結(jié)束后沒有獲獎的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案