棱長為2的正方體ABCD-A1B1C1D1中,=
- A.
- B.
4
- C.
- D.
-4
B
分析:利用
與
的夾角等于
與BD的夾角,等于60°,向量的模等于棱長的
倍,代入兩個向量的數(shù)量積的定義計算.
解答:棱長為2的正方體ABCD-A
1B
1C
1D
1中,
與
的夾角等于
與BD的夾角,等于60°.
∴
=2
×2
cos60°=4,
故選B.
點評:本題考查兩個向量的數(shù)量積的定義,關(guān)鍵是求出兩個向量的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
在棱長為2的正方體ABCD-A
1B
1C
1D
1中,E,F(xiàn)分別為棱AB和CC
1的中點,則線段EF被正方體的內(nèi)切球球面截在球內(nèi)的線段長為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,在棱長為2的正方體ABCD-A
1B
1C
1D
1中,E、F、M、H分別為A
1D
1、CC
1、AB、DB
1的中點.
(1)求證:EF∥平面ACD
1;
(2)求證:MH⊥B
1C;
(3)在棱BB
1上是否存在一點P,使得二面角P-AC-B的大小為30°?若存在,求出BP的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在棱長為2的正方體ABCD-A1B1C1D1中,E、F分別為A1D1和CC1的中點
(1)求證:EF∥平面A1C1B;
(2)求異面直線EF與AB所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在棱長為2的正方體ABCD-A1B1C1D1中,點E,F(xiàn)分別是棱AB,BC的中點,則點C1到平面B1EF的距離是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
(2007•靜安區(qū)一模)(文)如圖,在棱長為2的正方體ABCD-A
1B
1C
1D
1中,點E、F分別是棱AB、AD的中點.求:
(1)異面直線BC
1與EF所成角的大。
(2)三棱錐A
1-EFC的體積V.
查看答案和解析>>