12.某廠生產(chǎn)A與B兩種產(chǎn)品,每公斤的產(chǎn)值分別為600元與400元,又知每生產(chǎn)1公斤A產(chǎn)品需要電力2千瓦、煤4噸;生產(chǎn)1公斤B產(chǎn)品需要電力3千瓦、煤2噸.但該廠的電力供應(yīng)不得超過100千瓦.煤最多只有120噸.問如何安排生產(chǎn)計劃(生產(chǎn)A產(chǎn)品7.5公斤、B產(chǎn)品35公斤)才能使產(chǎn)值最大?

分析 先設(shè)生產(chǎn)甲、乙兩種產(chǎn)品分別為x千克,y千克,其利產(chǎn)值為z元,列出約束條件,再根據(jù)約束條件畫出可行域,設(shè)z=600x+400y,再利用z的幾何意義求最值,只需求出直線z=600x+400y過可行域內(nèi)的點時,從而得到z值即可.

解答 解析:設(shè)生產(chǎn)甲、乙兩種產(chǎn)品分別為x千克,y千克,其利產(chǎn)值為z元,
根據(jù)題意,可得約束條件為$\left\{\begin{array}{l}{4x+2y≤100}\\{2x+3y≤120}\\{x≥0,y≥0}\end{array}\right.$…(3分)
作出可行域如圖:….(5分)
目標函數(shù)z=600x+400y,
作直線l0:3x+2y=0,再作一組平行于l0的直線l:3x+2y=z,當直線l經(jīng)過P點時z=600x+400y取得最大值,….(9分)
由 $\left\{\begin{array}{l}{4x+2y=100}\\{2x+3y=120}\end{array}\right.$,
解得交點P( 7.5,35)….(12分)
所以有z最大=600×7.5+400×35=18500(元)…(13分)
所以生產(chǎn)甲產(chǎn)品7.5千克,乙產(chǎn)品35千克時,總產(chǎn)值最大,為18500元.…(14分).
故答案為:7.5;35.

點評 本題是一道方案設(shè)計題型,考查了列一元一次不等式組解實際問題的運用及一元一次不等式組的解法的運用,解答時找到題意中的不相等關(guān)系是建立不等式組的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

2.已知不等式:|x-1|-|x+3|<a的解集為R,則實數(shù)a的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在6枚硬幣A,B,C,D,E,F(xiàn)中,有5枚是真幣,1枚是假幣,5枚真幣重量相同,假幣與真幣的重量不同,現(xiàn)稱得A和B共重10克,C,D共重11克,A,C,E共重16克,則假幣為( 。
A.AB.BC.CD.D

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)與雙曲線$\frac{x^2}{3}$-y2=1的離心率互為倒數(shù),且直線x-y-2=0經(jīng)過橢圓的右頂點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設(shè)不過原點O的直線l與橢圓C交于M、N兩點,且直線OM、MN、ON的斜率依次成等比數(shù)列,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{17π}{6}$B.$\frac{17π}{3}$C.D.$\frac{13π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設(shè)A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2},C={2,-3}.
(1)求a,b的值及A,B;
(2)求(A∪B)∩C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.以下關(guān)于二面角的命題中,正確的有①④.
①若一個平面與二面角的棱垂直,則該平面與二面角的兩個半平面的交線所成的角就是二面角的平面角;
②二面角α-l-β的大小為θ1,m,n為直線且m⊥α,n⊥β,m與n所成的角為θ2,則θ12=π;
③一個二面角的兩個半平面分別垂直于另一個二面角的兩個半平面,則這兩個二面角的平面角相等或者互補; 
④三棱錐側(cè)面與側(cè)面所成的二面角都相等且底面是正三角形,則該三棱錐一定是正三棱錐.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,四邊形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC
(Ⅰ)求證:A,B,C,P四點共圓;
(Ⅱ)若∠CAD=$\frac{π}{3}$,AB=1,求四邊形ABCP的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知實數(shù)x,y滿足y=|x-1|+|x+2|,-3≤x≤3,試求$\frac{y-1}{x+4}$的最大值和最小值.

查看答案和解析>>

同步練習冊答案