【題目】已知是函數(shù)的零點(diǎn),.

(1)求實(shí)數(shù)的值;

(2)若不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ)1();()

【解析】

利用是函數(shù)的零點(diǎn),代入解析式即可求實(shí)數(shù)的值;由不等式上恒成立,利用參數(shù)分類法,轉(zhuǎn)化為二次函數(shù)求最值問題,即可求實(shí)數(shù)的取值范圍;原方程等價(jià)于,利用換元法,轉(zhuǎn)化為一元二次方程根的個(gè)數(shù)進(jìn)行求解即可.

是函數(shù)的零點(diǎn),

,得;

,,

則不等式上恒成立,

等價(jià)為

,

同時(shí)除以,得

,則,

,

的最小值為0,

,即實(shí)數(shù)k的取值范圍;

原方程等價(jià)為,

,

兩邊同乘以

此方程有三個(gè)不同的實(shí)數(shù)解,

,則

,

,

當(dāng)時(shí),,得,

當(dāng),要使方程有三個(gè)不同的實(shí)數(shù)解,

則必須有有兩個(gè)解,

,得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國自改革開放以來,生活越來越好,肥胖問題也目漸顯著,為分析肥胖程度對(duì)總膽固醇與空腹血糖的影響,在肥胖人群中隨機(jī)抽出8人,他們的肥胖指數(shù)值、總膽固醇指標(biāo)值單位: )、空腹血糖指標(biāo)值(單位: )如下表所示:

(1)用變量的相關(guān)系數(shù),分別說明指標(biāo)值與值、指標(biāo)值與值的相關(guān)程度;

(2)求的線性回歸方程,已知指標(biāo)值超過5.2為總膽固醇偏高,據(jù)此模型分析當(dāng)值達(dá)到多大時(shí),需要注意監(jiān)控總膽固醇偏高情況的出現(xiàn)(上述數(shù)據(jù)均要精確到0.01)

參考公式:相關(guān)系數(shù)

, , .

參考數(shù)據(jù): ,,

,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的參數(shù)方程: 為參數(shù)),曲線的參數(shù)方程: 為參數(shù)),且直線交曲線兩點(diǎn).

(1)將曲線的參數(shù)方程化為普通方程,并求時(shí), 的長度;

(2)巳知點(diǎn),求當(dāng)直線傾斜角變化時(shí), 的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=logax1)(a0,且a≠1).

1)若fx)在[2,9]上的最大值與最小值之差為3,求a的值;

2)若a1,求不等式f2x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列方程組的解集:

12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,為左焦點(diǎn),為上頂點(diǎn),為右頂點(diǎn),若,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為.

(1)求的標(biāo)準(zhǔn)方程;

(2)是否存在過點(diǎn)的直線,與交點(diǎn)分別是,使得?如果存在,求出直線的方程;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓與過原點(diǎn)的直線交于、兩點(diǎn),右焦點(diǎn)為,,若的面積為,則橢圓的焦距的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 設(shè)函數(shù)f(x)=(x-1)2bln x,其中b為常數(shù).

(1)當(dāng)b>時(shí),判斷函數(shù)f(x)在定義域上的單調(diào)性;

(2)若函數(shù)f(x)有極值點(diǎn),求b的取值范圍及f(x)的極值點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案