【題目】已知橢圓 的左頂點為,右焦點為,過點且斜率為1的直線交橢圓于另一點,交軸于點,

(1)求橢圓的方程;

(2)過點作直線與橢圓交于兩點,連接為坐標原點)并延長交橢圓于點,求面積的最大值及取最大值時直線的方程.

【答案】(1) ;(2), .

【解析】試題分析:(1)根據(jù)題意列出關(guān)于 、的方程組,結(jié)合性質(zhì) , ,求出 、即可得結(jié)果;(2)設(shè)直線方程,代入橢圓方程,由韋達定理,弦長公式及基本不等式的性質(zhì),即可求得面積為,根據(jù)基本不等式可求最大值及直線的方程.

試題解析:(1)由題知,故,代入橢圓的方程得,又,故,橢圓.

(2)由題知,直線不與軸重合,故可設(shè),由,

設(shè),則,由關(guān)于原點對稱知,

,

,即,當且僅當時等號成立,

面積的最大值為3,此時直線的方程為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在公比為正數(shù)的等比數(shù)列{an}中, , ,數(shù)列{bn}(bn>0)的前n項和為Sn滿足 (n≥2),且S10=100.
( I)求數(shù)列{an}和數(shù)列{bn}的通項公式;
( II)求數(shù)列{anbn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,最小值為2的是(
A.y=x+
B.y=sinx+ ,x∈(0,
C.y=4x+2x , x∈[0,+∞)
D.y=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線上的點到二定點 的距離之和為定值,以為圓心半徑為4的圓有兩交點,其中一交點為, 在y軸正半軸上,圓與x軸從左至右交于二點,

(1)求曲線、的方程;

(2)曲線,直線交于點,過點的直線與曲線交于二點,過的切線, 交于.當x軸上方時,是否存在點,滿足,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某印刷廠的打印機每5年需淘汰一批舊打印機并購買新機,買新機時,同時購買墨盒,每臺新機隨機購買第一盒墨150元,優(yōu)惠0元;再每多買一盒墨都要在原優(yōu)惠基礎(chǔ)上多優(yōu)惠一元,即第一盒墨沒有優(yōu)惠,第二盒墨優(yōu)惠一元,第三盒墨優(yōu)惠2元,……,依此類推,每臺新機最多可隨新機購買25盒墨.平時購買墨盒按零售每盒200元.

公司根據(jù)以往的記錄,十臺打印機正常工作五年消耗墨盒數(shù)如下表:

消耗墨盒數(shù)

22

23

24

25

打印機臺數(shù)

1

4

4

1

以這十臺打印機消耗墨盒數(shù)的頻率代替一臺打印機消耗墨盒數(shù)發(fā)生的概率,記ξ表示兩臺打印機5年消耗的墨盒數(shù).

(1)求ξ的分布列;

(2)若在購買兩臺新機時,每臺機隨機購買23盒墨,求這兩臺打印機正常使用五年在消耗墨盒上所需費用的期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子里裝有大小均勻的8個小球,其中有紅色球4個,編號分別為1,2,3,4;白色球4個,編號分別為2,3,4,5. 從盒子中任取4個小球(假設(shè)取到任何一個小球的可能性相同).

(1)求取出的4個小球中,含有編號為4的小球的概率;

(2)在取出的4個小球中,小球編號的最大值設(shè)為,求隨機變量的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),當x∈[﹣1,0]時,函數(shù)的解析式為f(x)= (a∈R).
(1)求出f(x)在[0,1]上的解析式;
(2)求f(x)在[﹣1,0]上的最大值.
(3)對任意的x1 , x2∈[﹣1,1]都有|f(x1)﹣f(x2)|≤M成立,求最小的整數(shù)M的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】偶函數(shù)f(x)(x∈R)滿足:f(﹣4)=f(2)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減,遞增,則不等式xf(x)<0的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若點P在橢圓 +y2=1上,F(xiàn)1、F2分別是橢圓的兩焦點,且∠F1PF2=60°,則△F1PF2的面積是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案