12.在我國明代數(shù)學家吳敬所著的《九章算術比類大全》中,有一道數(shù)學名題叫“寶塔裝燈”,內(nèi)容為“遠望巍巍塔七層,紅燈點點倍加增;共燈三百八十一,請問頂層幾盞燈?”(“倍加增”指燈的數(shù)量從塔的頂層到底層按公比為2的等比數(shù)列遞增).根據(jù)此詩,可以得出塔的頂層和底層共有(  )
A.3盞燈B.192盞燈C.195盞燈D.200盞燈

分析 由題意設頂層的燈數(shù)為a1,由等比數(shù)列的前n項和公式求出首項a1=3,從而能求出第7項的值,由此能求出塔的頂層和底層共有幾盞燈.

解答 解:由題意設頂層的燈數(shù)為a1,
則有${S}_{7}=\frac{{a}_{1}(1-{2}^{7})}{1-2}$=381,
解得a1=3,
∴${a}_{7}={a}_{1}×{2}^{6}$=3×26=192,
∴a1+a7=195.
故選:C.

點評 本題考查等比數(shù)列的應用,是基礎題,解題時要認真審題,注意等比數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.設{an}是首項為a1,公差為-1的等差數(shù)列,sn為其前n項和,s2是s1與s4的等比中項,則a1=( 。
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.為了求函數(shù)f(x)=2x+3x-7的一個零點(精確度0.05),某同學已經(jīng)利用計算器得f(1.5)=0.32843,f(1.25)=-0.8716,則還需用二分法等分區(qū)間的次數(shù)為( 。
A.2次B.3次C.4次D.5次

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知$p:|{1-\frac{x-1}{3}}|≤2$;q:x2-4x+4-m2≤0(m>0)若?p是?q的必要非充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.執(zhí)行如圖的程序框圖,那么輸出S的值是( 。
A.-1B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)$f(x)=\sqrt{ln(x+1)+2x-a}$(a∈R).若存在x0∈[0,1]使得f(f(x0))=x0,則a的取值范圍是[-1,2+ln2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設離散型隨機變量X的分布列為
X01234
P0.20.10.10.30.3
若離散型隨機變量Y滿足Y=2X+1,則E(Y)=5.8;D(Y)=23.2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x)=ex-ax在(-∞,0)上是減函數(shù),則實數(shù)a的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.cos1200°=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習冊答案