9.若直線x+y+b=0與圓(x+2)2+y2=2相切,則b=4或0.

分析 由題意知圓心(-2,0)到直線x+y+b=0的距離等于半徑,代入點到直線的距離公式求出b的值.

解答 解:由題意知,直線x+y+b=0與圓(x+2)2+y2=2相切,
∴$\frac{|-2+b|}{\sqrt{2}}$=$\sqrt{2}$,解得b=4或0.
故答案為:4或0.

點評 本題考查了直線與圓相切的條件和點到直線的距離公式,是常見的基本題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.直線ax-y-2a+1=0,被圓C:x2+y2-10x+6y-15=0截得的最短弦長是4$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知圓C的方程是(x-2)2+(y-2)2=4,動直線l:y=mx+(1-m)與圓C交于A,B兩點,當(dāng)△ABC面積取得最大值時,m的值為( 。
A.-1B.2C.-3D.$-\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\vec a$=(4,2),$\vec b$=(6,y),且$\vec a$⊥$\vec b$,則y的值為(  )
A.-12B.-3C.3D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=log2(x+1)的定義域是( 。
A.{x|x>-1}B.{x|x≠-1}C.{x|x>1}D.R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.給定兩個命題:p:對任意實數(shù)x,都有ax2+ax+1>0恒成立,q:函數(shù)y=3x-a在x∈[0,2]上有零點,如果(¬p)∧q為假命題,¬q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖所示,已知AB為圓O的直徑,點D為線段AB上一點,且AD=$\frac{1}{3}$DB,點C為圓O上一點,且BC=$\sqrt{3}$AC.點P在圓O所在平面上的正投影為點D,PD=BD.
(Ⅰ)求證:CD⊥PA;
(Ⅱ)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)D=$|\begin{array}{l}{1}&{-1}&{0}&{2}\\{1}&{0}&{4}&{1}\\{2}&{0}&{3}&{0}\\{1}&{2}&{3}&{4}\end{array}|$,求A41+A42+A43+A44,其中A4j(j=1,2,3,4)為元素a4j的代數(shù)余子式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2log3(x-a)-1og3(x+3).
(1)當(dāng)a=3時,解不等式f(x)≥0;
(2)當(dāng)x∈(-3,+∞)時,f(x)≥0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案