18.已知sin2α=$\frac{1}{4}$,則${sin^2}(α+\frac{π}{4})$=( 。
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{2}{3}$

分析 利用誘導(dǎo)公式、半角公式,求得要求式子的值.

解答 解:∵sin2α=$\frac{1}{4}$,則${sin^2}(α+\frac{π}{4})$=$\frac{1-cos(2α+\frac{π}{2})}{2}$=$\frac{1+sin2α}{2}$=$\frac{5}{8}$,
故選:C.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、半角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q=3,S3+S4=$\frac{53}{3}$,則a3=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知復(fù)數(shù)z滿足$z=\frac{1+2i}{{{{(1-i)}^2}}}$,則在復(fù)平面內(nèi)復(fù)數(shù)$\overline z$對(duì)應(yīng)的點(diǎn)為( 。
A.$(-1,-\frac{1}{2})$B.$(1,-\frac{1}{2})$C.$(-\frac{1}{2},1)$D.$(-\frac{1}{2},-1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知實(shí)數(shù)x、y滿足$\left\{\begin{array}{l}1≤x-y≤2\\ 2≤x+y≤4\end{array}\right.$,則z=4x-2y的最大值為( 。
A.3B.5C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)集合A={x|x>2},B={x|x2-4x<0},則A∩B=( 。
A.(4,+∞)B.(2,4)C.(0,4)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若命題p:?x∈R,x2+2ax+1≥0是真命題,則實(shí)數(shù)a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.第31屆夏季奧林匹克運(yùn)動(dòng)會(huì)于2016年8月5日至21日在巴西里約熱內(nèi)盧舉行,為了選拔某個(gè)項(xiàng)目的奧運(yùn)會(huì)參賽隊(duì)員,共舉行5次達(dá)標(biāo)測(cè)試,選手如果通過(guò)2次達(dá)標(biāo)測(cè)試即可參加里約奧運(yùn)會(huì),不用參加其余的測(cè)試,而每個(gè)選手最多只能參加5次測(cè)試,假設(shè)某個(gè)選手每次通過(guò)測(cè)試的概率都是$\frac{1}{3}$,每次測(cè)試通過(guò)與是相互獨(dú)立.規(guī)定:若前4次都沒(méi)有通過(guò)測(cè)試,則第5次不能參加測(cè)試.
(1)求該選手能夠參加本屆奧運(yùn)會(huì)的概率;
(2)記該選手參加測(cè)試的次數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知f(x)是R上的奇函數(shù),則“x1+x2=0”是“f(x1)+f(x2)=0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知等比數(shù)列{an},且a6+a8=4,則a8(a4+2a6+a8)的值為(  )
A.2B.4C.8D.16

查看答案和解析>>

同步練習(xí)冊(cè)答案