【題目】已知右焦點為F的橢圓C: + =1(a>b>0)過點M(1, ),直線x=a與拋物線L:x2= y交于點N,且 = ,其中O為坐標原點.
(1)求橢圓C的方程;
(2)直線l與橢圓C交于A、B兩點.
①若直線l與x軸垂直,過點P(4,0)的直線PB交橢圓C于另一點E,證明直線AE與x軸相交于定點;
②已知D為橢圓C的左頂點,若l與直線DM平行,判斷直線MA,MB是否關于直線FM對稱,并說明理由.

【答案】
(1)解:設N(a,y0),連接MN,由 = ,則OMNF為平行四邊形,則y0= ,

將M(1, )代入拋物線方程:解得:a=2,

將M(1, )代入橢圓方程: ,解得:b2=3,

∴橢圓的標準方程:


(2)解:①證明:由題意,直線PB的斜率存在,設直線PB的方程為y=k(x﹣4),B(x1,y1),E(x2,y2),

則A(x1,﹣y1), ,整理得:(3+4k2)x2﹣32k2x+64k2﹣12=0,

x1+x2= ,x1x2= ,①

則直線AE的方程為:y﹣y2= (x﹣x2),令y=0,x=x2 ,

由y1=k(x1﹣4),y2=k(x2﹣4),

∴x= ,

∴x=1,

∴直線AE與x軸相交于定點(1,0);

②由題意可知,直線MF的方程為x=1,則kOM= ,設直線l:y= x+n,(n≠1),

設A(x3,y3),B(x4,y4), ,整理得:x2+nx+n2﹣3=0,

△=n2﹣4×(n2﹣3)=12﹣3n2>0,即b∈(﹣2,2),且n≠1,

x3+x4=﹣n,x3x4=n2﹣3,

則kMA+kMB= + = +

=1+ + =1+ =1﹣ =0,

直線MA,MB關于直線x=1對稱


【解析】(1)將由 = ,即可求得N點坐標,將M代入拋物線方程,即可求得a,代入橢圓方程,即可求得b的值,即可求得橢圓方程;(2)①設直線PB的方程,設B,E點坐標,將直線PB代入橢圓方程,求得直線AE的方程,利用韋達定理即可求得x的值,直線AE與x軸相交于定點(1,0);

②設直線l的方程,代入橢圓方程,由△>0,即可求得n的取值范圍,利用直線的斜率公式及韋達定理kMA+kMB=0,則直線MA,MB關于直線x=1對稱.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)= sin(2x+φ)(|φ|< )的圖象關于直線x= 對稱,且當x1 , x2∈(﹣ ,﹣ ),x1≠x2時,f(x1)=f(x2),則f(x1+x2)等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0)的左右焦點分別為F1 , F2 , P為雙曲線右支上一點(異于右頂點),△PF1F2的內(nèi)切圓與x軸切于點(2,0),過F2作直線l與雙曲線交于A,B兩點,若使|AB|=b2的直線l恰有三條,則雙曲線離心率的取值范圍是(
A.(1,
B.(1,2)
C.( ,+∞)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某科技公司生產(chǎn)一種手機加密芯片,其質量按測試指標劃分為:指標大于或等于70為合格品,小于70為次品.現(xiàn)隨機抽取這種芯片共120件進行檢測,檢測結果統(tǒng)計如表:

測試指標

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

芯片數(shù)量(件)

8

22

45

37

8

已知生產(chǎn)一件芯片,若是合格品可盈利400元,若是次品則虧損50元.
(Ⅰ)試估計生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)3件芯片所獲得的利潤不少于700元的概率.
(Ⅱ)記ξ為生產(chǎn)4件芯片所得的總利潤,求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+φ)+2sin2x(|φ|< )的圖象過點( ).
(1)求函數(shù)f(x)在[0, ]的最小值;
(2)設角C為銳角,△ABC的內(nèi)角A、B、C的對邊長分別為a、b、c,若x=C是曲線y=f(x)的一條對稱軸,且△ABC的面積為2 ,a+b=6,求邊c的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(m,cos2x), =(sin2x,n),設函數(shù)f(x)= ,且y=f(x)的圖象過點( , )和點( ,﹣2).
(Ⅰ)求m,n的值;
(Ⅱ)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點到點(0,3)的距離的最小值為1,求y=g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某城鎮(zhèn)由6條東西方向的街道和7條南北方向的街道組成,其中有一個池塘,街道在此變成一個菱形的環(huán)池大道.現(xiàn)要從城鎮(zhèn)的A處走到B處,使所走的路程最短,最多可以有種不同的走法.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將三顆骰子各擲一次,記事件A=“三個點數(shù)都不同”,B=“至少出現(xiàn)一個6點”,則條件概率P(A|B),P(B|A)分別是(
A. ,
B. ,
C. ,
D.

查看答案和解析>>

同步練習冊答案