設A1、A2、A3、A4、A5是空間中給定的5個不同的點,則使=0成立的點M的個數(shù)為________.
1個
設A1、A2、A3、A4、A5坐標分別為(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),(x4,y4,z4)(x5,y5,z5),設M坐標為(x,y,z).
=0得方程
(x1-x)+(x2-x)+(x3-x)+(x4-x)+(x5-x)=0,
(y1-y)+(y2-y)+(y3-y)+(y4-y)+(y5-y)=0,
(z1-z)+(z2-z)+(z3-z)+(z4-z)+(z5-z)=0,
解得x=,y=,z=.
故有唯一的M滿足等式.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,底面是邊長為2的菱形,且,以為底面分別作相同的正三棱錐,且.

(1)求證:平面;
(2)求平面與平面所成銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知四棱錐,底面是等腰梯形,
中點,平面,
, 中點.

(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在斜三棱柱中,O是AC的中點,平面,.

(1)求證:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是邊長為1的正方形,E、F分別是棱B1B、DA的中點.
(1)求二面角D1-AE-C的大。
(2)求證:直線BF∥平面AD1E.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知空間三點A(-2,0,2),B(-1,1,2),C(-3,0,4).設a,b.
(1)求ab的夾角θ;
(2)若向量kab與ka-2b互相垂直,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在空間直角坐標系中,點與點的距離為               .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,M為DD1的中點,O為底面ABCD的中心,P為棱A1B1上任意一點,則直線OP與直線AM所成的角是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P­ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點.

(1)求直線PB與平面POC所成角的余弦值;
(2)求B點到平面PCD的距離;
(3)線段PD上是否存在一點Q,使得二面角Q­AC­D的余弦值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案