已知平面區(qū)域
x-y+6≥0
3x-y-6≤0
2x+y+6≥0
恰好被面積最小的圓C及其內(nèi)部所覆蓋,則圓C的方程為
(x-3)2+(y-3)2=90
(x-3)2+(y-3)2=90
分析:根據(jù)題意可知平面區(qū)域表示的是三角形及其內(nèi)部,且△ABC是鈍角三角形,進(jìn)而可推斷出覆蓋它的且面積最小的圓是以AB為直徑的圓,進(jìn)而求得圓心和半徑,則圓的方程可得.
解答:解:由題意知,平面區(qū)域
x-y+6≥0
3x-y-6≤0
2x+y+6≥0
如圖,
此平面區(qū)域表示的是以A(6,12),B(0,-6),C(-4,2)構(gòu)成的三角形及其內(nèi)部,且∠ACB為鈍角,
∴△ABC是鈍角三角形,所以覆蓋它的且面積最小的圓是以AB為直徑的圓,
故圓心是(3,3),半徑是
1
2
|AB|=
1
2
(6-0)2+(12+6)2
=3
10
,
所以圓C的方程是(x-3)2+(y-3)2=90.
故答案為:(x-3)2+(y-3)2=90.
點(diǎn)評(píng):本題主要考查了直線與圓的方程的應(yīng)用,考查了數(shù)形結(jié)合的思想,轉(zhuǎn)化和化歸的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面區(qū)域
x≥0
y≥0
x+2y-4≤0
恰好被面積最小的圓C:(x-a)2+(y-b)2=r2及其內(nèi)部所覆蓋.
(1)試求圓C的方程.
(2)若斜率為1的直線l與圓C交于不同兩點(diǎn)A,B滿足CA⊥CB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面區(qū)域
x-y+1≥0
x+y+1≥0
3x-y-1≤0
,恰好被面積最小的圓C:(x-a)2+(y-b)2=r2及其內(nèi)部所覆蓋.則圓C的方程為
(x-
1
2
)
2
+(y-
1
2
)
2
=
5
2
(x-
1
2
)
2
+(y-
1
2
)
2
=
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面區(qū)域
x≥0
y≥0
x+2y-4≤0
  恰好被面積最小的⊙C:(x-a)2+(y-b)2=r2及其內(nèi)部所覆蓋.
(1)試求⊙C的方程.
(2)若斜率為1的直線l與⊙C交于不同的兩點(diǎn)A、B,且滿足CA⊥CB,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知平面區(qū)域
x-y+1≥0
x+y+1≥0
3x-y-1≤0
,恰好被面積最小的圓C:(x-a)2+(y-b)2=r2及其內(nèi)部所覆蓋.則圓C的方程為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案