A. | 6種 | B. | 8種 | C. | 12種 | D. | 16種 |
分析 若第一門安排在開頭或結(jié)尾,則第二門有3種安排方法.若第一門安排在中間的3天中,則第二門有2種安排方法,根據(jù)分步計數(shù)原理分別求出安排方案種數(shù),相加即得所求.
解答 解:若第一門安排在開頭或結(jié)尾,則第二門有3種安排方法,這時,共有${C}_{2}^{1}×$3=6種方法.
若第一門安排在中間的3天中,則第二門有2種安排方法,這時,共有3×2=6種方法.
綜上可得,所有的不同的考試安排方案種數(shù)有6+6=12種,
故選C.
點評 本題考查排列、組合及簡單計數(shù)問題,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (2,4] | B. | (-∞,4] | C. | (3,4) | D. | [3,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若a≤b,則a+c≤b+c | B. | 若a+c≤b+c,則a≤b | C. | 若a+c>b+c,則a>b | D. | 若a>b,則a+c≤b+c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | 4$\sqrt{2}$ | C. | 16 | D. | $\frac{16}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com