10.已知{an}是等差數(shù)列,滿足a1=2,a4=14,數(shù)列{bn}滿足b1=4,b4=30,且數(shù)列{bn-an}是等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn

分析 (1)根據(jù)等差數(shù)列通項(xiàng)公式,求得d=4,寫出等差數(shù)列{an}通項(xiàng)公式,{bn-an}(n∈N+)是等比數(shù)列,得得q3=8,求得q,
(2))由(1)知${b_n}=4n-2+{2^n}$(n=1,2,3…),分組求和
數(shù)列{4n-2}的前n項(xiàng)和為2n2,數(shù)列{2n}的前n項(xiàng)和為$\frac{{2×(1-{2^n})}}{1-2}={2^{n+1}}-2$即可.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,由題意得$d=\frac{{{a_4}-{a_1}}}{3}=\frac{14-2}{3}=4$,…(1分)
所以an=a1+(n-1)d=4n-2.…(3分)
設(shè)等比數(shù)列(bn-an}的公比為q,由題意得${q^3}=\frac{{{b_4}-{a_4}}}{{{b_1}-{a_1}}}=\frac{30-14}{4-2}=8$,
解得q=2.…(4分)
所以${b_n}-{a_n}=({b_1}-{a_1}){q^{n-1}}={2^n}$,所以${b_n}=4n-2+{2^n}$(n=1,2,3…)…(6分)
(2)由(1)知${b_n}=4n-2+{2^n}$(n=1,2,3…).
數(shù)列{4n-2}的前n項(xiàng)和為2n2,…(7分)
數(shù)列{2n}的前n項(xiàng)和為$\frac{{2×(1-{2^n})}}{1-2}={2^{n+1}}-2$.…(9分)
所以,數(shù)列{bn}的前n項(xiàng)和為Sn=2n2+2n+1-2.…(10分)

點(diǎn)評(píng) 本題考查了等差數(shù)列等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示,五面體ABCDFE中,AB∥CD∥EF,四邊形ABCD,ABEF,CDFE都是等腰梯形,并且平面ABCD⊥平面ABEF,AB=12,CD=3,EF=4,梯形ABCD的高為3,EF到平面ABCD的距離為6,則此五面體的體積為57.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,已知點(diǎn)P(0,$\frac{3}{2}$)到橢圓上的點(diǎn)的最遠(yuǎn)距離是$\frac{7}{4}$,則短半軸之長b=(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD的底面ABCD是菱形,∠ADC=60°,PA=PC,PD⊥PB,AC∩BD=E,二面角P-AC-B的大小為60°.
(1)證明:AC⊥PB;
(2)求二面角E-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)滿足f(x+2)=f(x),且f(x)是偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x,若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=f(x)-kx-k有四個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(0,$\frac{1}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=a(x-1)2+lnx,a∈R.
(Ⅰ)當(dāng)$a=-\frac{1}{4}$時(shí),求函數(shù)y=f(x)的單調(diào)減區(qū)間;
(Ⅱ)$a=\frac{1}{2}$時(shí),令$h(x)=f(x)-3lnx+x-\frac{1}{2}$.求h(x)在[1,e]上的最大值和最小值;
(Ⅲ)若a≤0時(shí),求證:函數(shù)f(x)≤x-1在x∈[1,+∞)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點(diǎn),且PA=AB=AC=2,BC=2$\sqrt{2}$.
(1)求證:CD⊥平面PAC;
(2)如果N是棱AB上一點(diǎn),且三棱錐N-BMC的體積為$\frac{1}{3}$,求$\frac{AN}{NB}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,設(shè)所給的方向?yàn)槲矬w的正前方,試畫出它的三視圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.以下關(guān)于函數(shù)f(x)=sin2x-cos2x的命題,正確的是( 。
A.函數(shù)f(x)在區(qū)間$(0,\frac{2}{3}π)$上單調(diào)遞增
B.直線$x=\frac{π}{8}$是函數(shù)y=f(x)圖象的一條對(duì)稱軸
C.點(diǎn)$(\frac{π}{4},0)$是函數(shù)y=f(x)圖象的一個(gè)對(duì)稱中心
D.將函數(shù)y=f(x)的圖象向左平移$\frac{π}{8}$個(gè)單位,可得到$y=\sqrt{2}sin2x$的圖象

查看答案和解析>>

同步練習(xí)冊(cè)答案